Harry: A Scalable SIMD-based Multi-literal Pattern
Matching Engine for Deep Packet Inspection

Hao Xu*', Harry Chang?, Wenjun Zhu?, Yang Hong?, Geoff Langdale!, Kun Qiut and Jin Zhao*?
*School of Computer Science, Fudan University, China
TShanghai Key Laboratory of Intelligent Information Processing, Shanghai, China
Intel Asia-Pacific Research & Development Ltd., Shanghai, China
xuhao21@m.fudan.edu.cn, jzhao@fudan.edu.cn, {harry.chang, wenjun.zhu, hong.a.yang, geoff.langdale, kun.qiu} @intel.com

Abstract—Deep Packet Inspection (DPI) is a significant net-
work security technique. It examines traffic workloads by search-
ing for specific rules. Since every byte of packets needs to be
examined by many literal rules, multi-literal matching becomes
the performance bottleneck of DPI. FDR, the fastest multi-literal
matching engine on CPUs, takes advantage of Single-Instruction-
Multiple-Data (SIMD) to alleviate this bottleneck and achieves
a performance boost over the widely-used Aho-Corasick (AC)
algorithm. However, FDR does not deeply exploit the data-level
parallelism of SIMD and its SIMD vector utilization is only 50%.
Besides, limited by certain SIMD shift instructions, it cannot
benefit from advanced SIMD instruction sets. To overcome these
issues, we propose Harry, a scalable and SIMD-based multi-
literal matching engine. Harry adopts a column-vector-based
matching algorithm to improve the data-level parallelism and
SIMD vector utilization. To support the algorithm, it takes two
encoding methods to compress the mask table. Also, it utilizes
shuffle instruction to implement shift. We implement Harry on
commodity CPU and evaluate it with real network traffic and
DPI rules. Our evaluation shows that Harry reaches a throughput
of 30~70Ghbit/s, up to 52x that of AC and 2.09x of FDR. It has
been successfully deployed in Hyperscan.

Index Terms—DPI, literal matching, SIMD, network security

I. INTRODUCTION

Deep Packet Inspection (DPI) [1]-[3] is one of the funda-
mental techniques for many network security applications in-
cluding Intrusion Detection/Prevention System (IDS/IPS) [4]-
[7], Web Application Firewall (WAF) [8], [9] and application
identification system [10]. Different from the traditional packet
inspection that examines only the fixed 5 tuples in packet head-
ers, DPI analyzes the content of the packets by searching for
specific rules (i.e., patterns or signatures), which are usually
regular expressions. Therefore, regular expression matching
has been the core of DPIL

Nowadays, the network bandwidth is dramatically increas-
ing [11]-[14] and many DPI-based applications demand real-
time stream processing, which motivates researchers to im-
prove the regex (Regular Expression) matching efficiency.
To speed up regex matching, including pure string match-
ing, there is a trend toward using accelerators, such as
GPU/NPU/FPGA [7], [15]-[24] and programmable switching
ASICs [25]. Nevertheless, most of these solutions suffer from
one or more following shortcomings: 1) high capital costs, 2)
insufficient memory to hold a large number of rules and 3)
hard to be virtualized and provided as cloud-based middlebox

services. While performance does improve, these solutions
are rarely deployed. It is still the software regex matching
algorithms running on CPUs that are adopted in most real
scenarios.

There have been plenty of optimized regex matching al-
gorithms [19], [20], [26]-[31]. However, despite continuous
efforts, their performance is still not satisfying [7], [32]. It
has been reported that PCRE [28], a popular regex engine,
and RE2 [29], Google’s regex engine, need 12,800 and 1,116
seconds respectively to perform 1GB traffic matching, while
this traffic has only 818,682 packets [33].

On the contrary, taking multi-literal matching (also known
as multi-string matching) as a pre-filtering method has been
proven to be the best practice [34], [35], because literal
matching is two orders of magnitude outperforming regex
matching [36]. Most DPI-based applications, such as Snort [4]
and Suricata [5], match packets with multiple literal rules
before the expensive regex matching. The well-known Hy-
perscan [33], currently the fastest regex matcher, decomposes
regular expressions into literal and subregex components, and
performs multi-literal matching first to avoid unnecessary
regex matching, by which it needs only 133 seconds to
complete the 1GB traffic matching. Therefore, multi-literal
matching has been a fundamental building block, also the
performance bottleneck, of DPI systems [32], [37], [38].

There are a significant number of multi-literal matching
algorithms [33], [36], [39]-[41], among which the classic Aho-
Corasick (AC) algorithm [39] is used by many DPI applica-
tions such as Snort [4], Suricata [5], ModSecurity [8] and
CloudFlare’s WAF [32]. Besides, FDR [33], a bitwise-based
and SIMD-accelerated state-of-the-art multi-literal matching
engine, is much faster than AC and has been successfully
deployed by over 40 commercial projects, integrated into
37 open-source projects and in production used by tens of
thousands of cloud servers in data centers.

However, FDR has three issues. First, it does not deeply
exploit the data-level parallelism of SIMD. Second, its SIMD
vector utilization is relatively low, only 50%. Third, it is
limited by certain SIMD shift instructions and cannot be
implemented with more advanced SIMD instruction sets. In
prior work, Teddy [40] was presented to overcome the first two
issues, but its strategy has determined that it is only effective
for small-scale literal rule sets. When faced with large-scale

ones, with the number of literals more than 60 and the literal
length more than 8 bytes, Teddy’s performance would degrade
rapidly. Therefore Teddy cannot deal with large and complex
rule sets, which are very common in today’s DPI systems (e.g.,
the community rule set of Snort v3.0 [42] has 4024 rules and
OWASP ModSecurity Core Rule Set v3.3.2 has 3725 rules).

In order to overcome FDR’s issues and at the same time
be scalable with rule sets, in this paper, we propose Harry, a
scalable SIMD-based multi-literal matching engine for DPIL
Harry adopts a column-vector-based matching algorithm to
improve SIMD vector utilization and data-level parallelism.
To support the algorithm, it takes two encoding methods
to compress the mask table. Also, it utilizes VPERMB, the
shuffle instruction, to implement shift operation so that it can
be implemented with more advanced SIMD instruction sets.
Harry can reach a throughput of 30~70 Gbit/s, up to 52x
that of AC and 2.09x of FDR, with the number of literal
rules ranging from dozens, hundreds to thousands, on real
network traffic workloads. It has been successfully deployed
in Hyperscan [33]. Briefly speaking, this paper makes the
following contributions:

e We propose a column-vector-based matching algorithm
that improves SIMD vector utilization and data-level
parallelism. Compared with FDR who needs 3 SIMD op-
erations per input character, Harry needs only 0.43~0.71
SIMD operation per input character. Also, the SIMD
vector utilization has increased from 50% to 87.5%. Be-
sides, to support the algorithm, we design two encoding
methods to compress the mask table.

o We utilize VPERMB (the shuffle instruction) to im-
plement shift operation to overcome the shortcomings
of VPSLLDQ (the shift instruction) so that Harry can
be implemented in AVX512, the most advanced SIMD
instruction set.

o We implement Harry, FDR, and AC on commodity CPU
with AVX512 SIMD support. We conduct experiments to
compare Harry with FDR and AC.

o« We integrate Harry into Hyperscan. Harry has been
adopted by Hyperscan and is now working at the pre-
filtering stage.

The rest of the paper is organized as follows: Section II in-
troduces the background and our motivations. Section III gives
the overview design of Harry. Section IV explains the column-
vector-based matching algorithm. Section V introduces the two
encoding methods. Section VI gives the implementation details
of shift operation. Section VII evaluates Harry and analyzes
the evaluation results. Finally, Section VIII concludes.

II. BACKGROUND AND MOTIVATION

A. Shift-Or Algorithm

FDR is an extension of the classic Shift-Or algorithm. So
before introducing FDR, we would like to explain the principle
of Shift-Or [43], [44], which is critical for understanding the
issues of FDR and the innovations of Harry.

Shift-Or is a bitwise-based literal matching algorithm. It
converts literal matching into bitwise SHIFT and OR opera-
tions and supports matching multiple literals simultaneously.
We would first explain the principle of single-literal Shift-Or
and then multi-literal Shift-Or. We give the relevant notations
in Table L.

TABLE 1
DEFINITION OF NOTATIONS

Symbol | Description

A ASCII character set

s Input string

t The t-th iteration

m The number of characters processed in an iteration
T Mask table

M Match table of the ¢-th iteration

r State mask of the ¢-th iteration

r’ State mask of the (¢ — 1)-th iteration

w The literal(single-literal matching)
w; The ¢-th literal(multi-literal matching)

n The number of literals(multi-literal matching)
l The literal length(single-literal matching) or

maximum literal length(multi-literal matching)

1) Single-literal Shift-Or Matching: Suppose w is ‘rry’.
Before matching, it needs to build a mask table, as shown
in Fig. 1(A). The mask table consists of 256 rows and 3
columns. Each row vector is the mask of a certain ASCII
character. We mark this table as 7' and T[c] is the mask of
c. Bit T[c][i](i € [0,3)) indicates whether or not the i-th
character of ‘rry’ is c¢. For example, bit O in the green cell
(T['r"][0]) indicates that the first character of ‘rry’ is ‘',
bit 1 in the yellow cell (T['y’][1]) indicates that the second
character of ‘rry’ is not ‘y’. The mask table can be defined as:
if c= w[z] 0
1, otherwise
where ¢ € A, € [0,1).

After building the mask table, it begins to handle the input
string. It processes a chunk of input characters at a time, which
we call an iteration. For each input character c in an iteration,
it loads T[c] into the match table. Suppose it processes 4
characters in an iteration and the input string is ‘rsyrry’, with
‘rs’ in previous iteration and ‘yrry’ in current iteration, we
show the match table in Fig. 1(B). We mark the match table of
current iteration as M and the number of characters processed
in an iteration as m.

In match table, 3 bits arranged on a diagonal line can tell
us the match result of w. If they are all O bits, then it is a

rlofo[1] sHiFr 0]o
ey IERE BBE
Q S
NERERE \/o‘?“_______ _______ —
r{0|0][1 y|1]1]0 0|
A B e I I I LOAD r{0|0[1 SHIFT 0|0|1
v[1]1]o r{ofo]1 0
IERERE y[1]1]o0 [1]1

(A) Mask Table (B) Match Table (C) Shift Process

T =y [T 2> [0 o oo [l

Previous Iteration

#[ofofofo e~

= NEE

Current Iteration

111 SH|£T:>r:r>>4

OR
—— nn

(D) State Mask (D) Update State Mask

Fig. 1. Shift-Or Process of Single Literal Matching. In each iteration, the operation sequence is LOAD—SHIFT—OR—SHIFT.

n -1 bits

n(l+m — 1) bits

. high low | |
n bits — < —> f '
256 1 | @ m LOAD @m—lSHIFTE |®m—10R @ OR .
m : r r = (r|r mn
masks p— s : Ko
characters |

(A) Mask Table (B) Match Table

(C) Shift Process (D) State Mask (E) Update State Mask

Fig. 2. Row-vector-based Shift-Or Model. Suppose there are n literals to be matched, whose maximum length is /, and m input characters to be processed
in an iteration. Multi-literal shift-or matching has the same process as single-literal matching. Difference is that a cell in its tables contains n bits, each for a

single literal. So its mask vector has nl bits and its shift step is n bits.

successful match, else no match. For example in Fig. 1(B),
bits in the 3 orange cells indicate a match (‘rry’ is matched at
index 3 of ‘yrry’), bits in the 3 yellow cells indicate no match
(‘rry’ is not matched at index 2 of ‘yrry’).

To get the match results of w, Shift-Or algorithm shifts
MTi] left i bits to align the bits arranged on a diagonal line. As
shown in Fig. 1(C), in current iteration, the 4 vectors of M are
shifted left 0, 1, 2, 3 bits respectively, and in previous iteration,
the vectors are shifted the same way. Then it performs OR
operations on the shifted vectors to get the state mask. As
shown in Fig. 1(D), the state mask of current iteration is 7,
whose bits are from the original match table and can reflect
the match results of w. Besides, to guarantee a continuous
matching at iteration boundaries (from previous iteration to
current iteration), r should be updated with r = r|r/, where r’
is the state mask of the previous iteration and has been shifted
by v’ =1’ >> 4. After r = r|r’, r[i] tells the match result of
‘rry’ at index ¢, as shown in Fig. 1(D). Finally, r should also
be shifted by » = r >> 4 and passed to the next iteration.

2) Multi-literal Shift-Or Matching: The multi-literal Shift-
Or matching is much similar to single-literal matching except
that a cell in mask table and match table has n bits, each for
a certain literal. Suppose there are 2 literals, wg = ‘rry’, w;
= ‘yrr’, and the input characters of current iteration is still
‘yrry’. The mask table and match table are shown in Fig. 3.

The mask table can be defined as:

0, if c=w,[i]

T[] = 2

1, otherwise
where ¢ € A,i € [0,1),5 € [0,n). T|[c][i][j] refers to the j-th
bit in cell (¢,i) and Tc] still represents a one-dimensional
mask vector. The definition of match table does not change,
and neither does the shift-or process, except that the shift step

wi|y|ri|r

wo|r|r|y
S

sitooto o [y [10]11]o1
;
oAb [1 |+ [at]oal10
N NEEE
2 [r [o1]eo]1e
y [10[11]01
3 |y [10]11]01
IR

(A) Mask Table (B) Match Table

Fig. 3. Mask Table and Match Table of Two-literal Shift-Or. Each cell has
two bits, the first for wg and the second for wj. For example in the green
cell of the mask table, the left bit O indicates that ‘r’ is the second character
of wop and the right bit 0 indicates that ‘7’ is the second character of w;. In
match table, the 3 left bits in the orange cells indicate that wq is matched at
index 3 of ‘yrry’ and the 3 right bits in the yellow cells indicate that wi is
matched at index 2 of ‘yrry’.

has changed from 1 bit to n bits. We abstract the shift-or model
of multi-literal matching in Fig 2 and we call it row-vector-
based shift-or model.

B. FDR

FDR takes the above row-vector-based shift-or model and
utilizes SIMD to accelerate the matching process. Suppose the
SIMD vector length is L. The shift-or process should be within

an SIMD vector, so according to Fig. 2(C) we have:
nim+l-1)<L 3)

Based on practical experience, FDR sets n = 8 and [= 8

to constraint a mask to be of 64 bits, so for FDR it is:
8(m+7) <L)

If there are more than 8 literals or if a literal has more than
8 characters, FDR will take the following strategies.

alo0 o
s1]s2 51110 True Positive
11
alo|1 0 i
True Positive
b|1]0 dj1
c|O|1 alo
FIERE T False Positive
Bucket0 11 D
c
52 Mask Table False Positive
b|1]0
MatchTable

Fig. 4. Grouping. Group wo = ‘ab’ and w1 = ‘cd’ into bucket 0. Then
assemble 2 character sets s1 = {wo[0],w1[0]} and s2 = {wo[1], w1[1]}. The
mask table is defined as: If ¢ € s;, then T'[c][¢][0] = 0, else T'[c][¢][0] = 1.
We can see that each bucket occupies just 1 bit in a cell. The following shift-
or process is the same as what we have illustrated. After grouping, a match
will hit a certain bucket rather than an exact literal.

1) Grouping: 1If there are more than 8 literals, FDR will
group them into 8 buckets and try to match these buckets with
the input string. The grouping principle is shown in Fig. 4.
Formally, suppose each bucket has qq, q1, g2, q3,. . . ,q7 literals
and wg, wy, ..., w”v_l are literals in bucket v. We define

q
character set A% = J% " w?[k] and mask table T" as:

0, ifce A}
1, otherwise

T(d][k][v] = { (5)
where ¢ € Ak € [0,8),v € [0,8). The grouping strategy
is in fact a trade-off between space and accuracy. It achieves
matching a large number of literals but drops the accuracy.
For example, in Fig. 4, after grouping ‘ab’ and ‘cd’ into one
bucket, all of ‘ab’, ‘cd’, ‘ad’ and ‘cb’ can be recognized as
positive matches, among which ‘ad’ and ‘cb’ are actually false
positives.

2) Truncation: If a literal is longer than 8 bytes, FDR will
only match its 8-byte-long prefix. Of course, this can also
introduce false positives.

3) Exact Matching: Based on what we have illustrated
above, even if a certain bucket is matched, FDR still needs
to match the literals in it one by one. On one hand, FDR
needs to find the exact matched literal. On the other hand,
it can distinguish the true positives from the false positives
during this process. We call this step exact matching.

C. Problems of FDR & Motivations

FDR takes the row-vector-based shift-or model. In fact, this
model has several issues.

1) Not Deeply Exploited Data-level Parallelism: According
to condition 4, the larger L is, the larger m can be, which
means that with wider SIMD instruction (larger L), FDR can
process more characters in an iteration (larger m). Larger m
can enhance the instruction-level parallelism, because multiple
LOAD and SHIFT operations are independent of each other
and can be performed in parallel, according to (A)—(B)—(C)
in Fig. 2. However, the data-level parallelism cannot be im-
proved with larger m, because no matter how many characters
are processed, FDR always needs 3m SIMD operations to deal

with m characters, i.e., 3 operations per character, as shown in
Fig. 2. Due to the poor data-level parallelism, FDR can benefit
little from advanced SIMD instruction sets that have wider
SIMD instructions (larger L). Implementing FDR in AVX512
with 512-bit SIMD vectors cannot make much progress than
implementing it in SSSE3 with 128-bit SIMD vectors.

2) Low SIMD Vector Utilization: On one hand, FDR’s
mask has fixedly 64 bits. On the other hand, it operates by
masks (i.e., row vectors). Therefore with SSSE3, the SIMD
vector utilization is only 50%, and it’s even lower with other
SIMD instruction sets.

3) Defects of the Shift Instruction: In SSSE3, the shift in-
struction is PSLLDQ and it works well. However, in AVX512,
the shift instruction VPSLLDQ has a shortcoming that it
cannot shift bits across 128-bit boundaries. This shortcoming
has no effect if shift is not needed. Unfortunately, FDR needs
a lot of shift operations, most of which have a long shift
distance, which implies that FDR would lose plenty of bits
if implemented with AVXS512. These lost bits would lead to
an unacceptable number of false positives that have a great
influence on FDR’s performance.

These issues motivate us to design Harry with higher SIMD
vector utilization and data-level parallelism. More importantly,
Harry should avoid the defects of VPSLLDQ and be compat-
ible with AVX512, an advanced SIMD instruction set.

III. HARRY ARCHITECTURE

The overview design of Harry is shown in Fig. 5. Next, We
would briefly introduce its core components.

A. Column-vector-based Matching Algorithm

In order to find the match positions, FDR performs LOAD,
SHIFT and OR operations on masks, or called row vectors.
Performing on row vectors has incurred that the number of
SIMD operations relies on the number of input characters, as
shown in Fig. 2. Actually, we can also perform on column
vectors because shifting by column has the same effect to
align the diagonal bits. More importantly, it provides us with
the opportunity to decrease SIMD operations. So we have
proposed a column-vector-based matching algorithm for Harry
that needs only 0.43~0.71 SIMD operation per input character,
with much higher data-level parallelism than FDR who needs
3 operations per character.

B. The Encoding Methods

Although the column-vector-based matching algorithm is
more efficient, implementing it on modern CPU is not that
easy, because it needs 2048-bit-long SIMD vector to hold the
column vector of the mask table, while the longest SIMD
vector of modern CPU has only 512 bits (CPU with AVX512
SIMD support). The hardware limitation moves us to design
new encoding methods to compress the mask table, so that we
can use 512-bit-long SIMD vector to implement the matching
algorithm.

Input String

4 s B

Encoding
Compression
Based
Encoding -

Grouping Encoding

q Decomposition Selection
i Bucket ased || Mask Tabl
Literals uckets Encoding ask lable

\J /

N

\

Column Based
Matching Algorithm

True Positives

=) 000
) ooooo

False Positives

/

OOO o

e 00
(@) Matching

—

Positives

Exact

Shuffle Based
Shift

—

Fig. 5. The Architecture of Harry. Like FDR, Harry groups literals into 8 buckets and builds the mask table before matching. During the matching process,
it can also produce false positives and needs exact matching to drop them. Different from FDR, it takes a completely new column-vector-based matching
algorithm and designs two encoding methods to support the algorithm. Besides, in order to overcome the issues of VPSLLDQ (the shift instruction in AVX512),
it implements shift operation by VPERMB, a shuffle instruction that is originally used to reorder the elements in a certain vector.

C. The Shift Implementation

VPSLLDQ, the shift instruction in AVX512, has a short-
coming that it cannot shift bits across 128-bit boundaries. This
has a huge impact on Harry, because Harry’s matching algo-
rithm is based on plenty of shift operations. In order to deploy
Harry on CPU with AVX512 SIMD, we replace VPSLLDQ
with VPERMB, a shuffle instruction that is originally used to
reorder the elements in a vector.

IV. COLUMN-VECTOR-BASED MATCHING ALGORITHM

The core of our column-vector-based matching algorithm
is its shift-or model as shown in Fig. 6. It performs LOAD,
SHIFT, and OR operations all on column vectors. We can see
that this model has the following advantages:

e The number of SIMD operations (LOAD, SHIFT, and
OR) relies on [, the literal length, rather than m, the
number of characters processed in an iteration. This
implies that no matter how many characters are processed
in an iteration, Harry always needs 3/ SIMD operations.
In practice, Harry takes the same grouping and truncation
strategies as FDR, with n=8 and [=8, so it needs only
24 operations to process m characters. Theoretically, the
larger m is, the higher Harry’s performance is.

e The column vector length of match table is mn and
for Harry it is 8m. Unlike FDR whose row vector (i.e.,

[vectors

n bits <

@1 LOAD
256n mn
bits bits

| high

(A) Mask Table (B) Match Table

n(m+1—1) |bits

Mow @1 - 1SHIFT

the mask) length is fixedly 64 bits, Harry can adjust
its column vector length by changing m. The larger m
is, the higher the SIMD vector utilization is and the
more characters it can process per 24 SIMD operations.
Suppose the SIMD vector has L bits, and from Fig. 6(C)
we know that the (I — 1) SHIFT operations require a
SIMD vector to be able to hold n(m + [— 1) bits, which
is:

nm+l—-1)<L (6)

And for Harry it is:
8(m+7) < L)

Therefore in AVX512 where L = 512, Harry takes m =
56, which demonstrates that it needs only 24 SIMD oper-
ations per 56 input characters, i.e., 0.41 SIMD operation
per input character, and the SIMD vector utilization is
1+ = 87.5%, while FDR needs 3 SIMD operations per
character with SIMD vector utilization being %l =12.5%.

V. THE ENCODING METHOD

A. Problem Analysis

We have analyzed that Harry takes n = 8 and [= 8, and
with AVX512 SIMD support, it can process 56 characters in
an iteration. As shown in Fig. 6(A)—(B), for Harry, given

®1—-10R @ OR
|::> r > r=(r|r') >> mn bits
® SHIFT

(C) Shift Process (D) State Mask (E) Update State Mask

Fig. 6. Column-vector-based Shift-Or Model. Suppose there are n literals to be matched, whose maximum length is [, and m characters to be processed in
an iteration. This model performs LOAD, SHIFT, and OR operations on column vectors rather than row vectors. It should be noticed that a column vector of
the mask table contains 256n bits and that of match table contains mn bits. Besides, compared with the row-vector-based shift-or model, it needs 3/, rather

than 3m, SIMD operations per m input characters.

56 characters, it loads 8 column vectors from the mask table,
each containing 56 8-bit integers, and stores them in 8 SIMD
vectors for shifting. This step is accomplished by VPERMB,
the shuffle instruction in AVX512. We show VPERMB in
Fig. 7(A) and the load step of Harry in Fig. 7(B). VPERMB
is right the target SIMD instruction that is suitable for imple-
menting Harry’s load step. However, there is a problem that the
source vector of VPERMB, which has 64 8-bit integers, cannot
hold the column vector of mask table, which has 256 8-bit
integers. This is the main difficulty to implement the column-
vector-based algorithm. We need to find proper methods to
compress the mask table.

64 8-bit
integers

256 8-bit 56 ASCIlI 56 8-bit
integers chars

integers

Src ldx Des EMask Table Input Match Table
(A) VPERMB Instruction | (B) Load Step of Harry in AVX512

Fig. 7. VPERMB and Harry Load Step. In (A), VPERMB shuffles 8-bit
integers in Src across lanes using the corresponding indices in /dx, and stores
the result in Des. In (B), taking 56 input characters as indices, Harry picks
56 8-bit integers from a mask table column that includes 256 8-bit integers.
In AVXS512, Harry would store the 56 integers as the low 56 integers of an
SIMD vector (an AVX512 SIMD vector can hold 64 integers), with the higher
space left for shifting.

B. The Compression-based Encoding Method

We have several ways to simplify the mask table. Usually,
the input string contains only the commonly used ASCII
characters, which are 0x00~0x7f. Therefore, we can compress
the mask table to be of 128 rows. Even more, if only consider
the English characters which are 0x40~0x7f, we can further
compress the mask table to be of 64 rows. So a column
vector has only 64x8 = 512 bits, which is right inside an
AVXS512 SIMD vector. Here, we compress the mask table by
compressing the character set, from the whole ASCII character
set to English character set. We call it compression-based
encoding. And because the low 6 bits of English characters
(0x40~0x7f) are 000000~111111, we can load elements from
the mask table by the low 6 bits of the input characters, as
shown in Fig. 8. We call Harry with this encoding method as
Harry6b.

C. The Decomposition-based Encoding Method

1) Decompose FDR’s Encoding Bits: Before introducing
our decomposition-based encoding method, we would first ex-
plain FDR’s encoding. To reduce the false positives caused by
grouping, FDR encodes its mask table a with super character
set. It uses 12 bits to represent a single character, with the
lower 8 bits being the character’s 8 ASCII bits and the higher
4 bits being the next character’s low-level 4 bits. For example,
as ‘a’ = 01100001 and ‘d’ = 01100100, if the input string is

64 8-bit integers 56 ASCII chars 56 8-bit integers

j— a=01100001 33
56 x=01111000 56

|
57| | z=01111010 58
58] 1
y=01111001 57
Mask Table Input Match Table

Fig. 8. Harry6b Load Step. After compressing, the mask table has only 64
rows and its column vector has 64 8-bit integers. For the 56 input characters
‘axz...y’, take their low 6 bits as indices to pick elements from the column
vector of the mask table.

‘ad’, then the encoding of ‘a’ would be 010001100001. Rather
than compressing the mask table, FDR enlarges its mask table
from 256 rows to 4096 rows. This can significantly reduce
the false positives as it introduces more information to the
mask table (the detailed reason can be found in the paper of
Hyperscan [33]).

If Harry takes FDR’s encoding, the column vector of mask
table would contain 4096x8 bits, which is far beyond what
a SIMD vector can hold. So we try to compress the mask
table by decomposing the 12 bits into high 6 bits and low
6 bits. The mask table is changed as shown in Fig. 9. After
decomposition, the column vector just contains 64x8 = 512
bits. We call Harry with this decomposition-based encoding

r=0x272 | r=0x972 |y = 0x079
1H | 1L |2H [2L | 3H | 3L
37 | 50

3]
=]
o
N

r r y
0x272 [0x972 | 0x079
1 1

0x079

alalalafa

= |E

64 Rows < (37

4096 Rows 0x272

y
y
y
y

H

-

3 Columns

0x972

alalalola]a] =~
alalalal=alo

B,

50

57

alalalalalalalola]lala]o
alalalo|lalalalalala] =~
alalalalalalalalale =]~
alo| alalalalalalala] =

alalalal

.
6 Columns

Fig. 9. Mask Table Change. Suppose the literal is ‘rry’. The left table is the
mask table before decomposing. In the original ASCII character set, ‘r’ is
0x72 and ‘y’ is 0x79. According to FDR’s super character set, ‘r’, ‘r’, and
‘v’ of ‘rry’ is encoded as 0x272, 0x972, and 0x079. After decomposing, each
12-bit character is regarded as two 6-bit parts, one high part (H) and one low
part (L). We use a decimal value to represent a 6-bit part and it should be
between 0 and 63. The dimension of mask table has changed from 40963
to 64x6 (for Harry, from 4096 x8 to 64 16).

as Harry12b. For Harry12b, the step to load elements from
column vectors of the mask table is also changed, as shown
in Fig. 10.

2) Additional SIMD Operations: We can see from Fig. 9
and Fig. 10 that the number of LOAD operations, after
decomposing the 12 bits, has doubled because the number
of mask table columns doubled. Besides, before shifting, 3

Column Vector 3H Column Vector 3L

e e
el a7l [T1..Ts0[... [57].
1{o[1 11171 1fo[1]1[1[o]1
W 1H[1L [2H]2L[3H]3L
a 9 [9[s7] 1 [s7[50[50[57] 3
Yol[+1[1[1]1]@
EEEEEEE
I ERENER) ENER !
| t|1]0e]ol1]4
9 [57] 9 [50]a7[50] 1 [57 i yrjere
Match Table

0x279|0x272|0x972 | 0x079
y r r y

Fig. 10. Harryl2b Load Step. For input characters {%y’, r’, 7, '},
decompose them into 2 vectors. The first vector(the blue vector in this figure)
contains the high 6-bit decimal values of the 4 characters and the second
vector(the orange one in this figure) contains the low 6-bit decimal values.
We mark them as « and 3. Then use VPERMB to pick elements from 3H
and 3L (the last two column vectors of the new mask table in Fig. 9), taking
« and S as index vectors respectively. Finally, put the picked elements (the
yellow and green vectors) in match table.

additional OR operations should be performed on the 3 pairs
of H&L vectors in match table. For Harry12b, it needs 16
additional SIMD operations(8 LOAD and 8 OR), so totally it
needs 40 SIMD operations per 56 input characters, i.e., 0.71
SIMD operation per character.

D. False Positives

We have mentioned that grouping and truncation may
introduce false positives. We call them GPF (Grouping False
Positive) and TFP (Truncation False Positive). Here the new
encoding methods also introduce false positives as some
information will be lost after compressing the mask table.
Take compression-based encoding as an example, we explain
why false positives may appear in Fig. 11. We call these
0: 00110000 48

p: 01110000 48 q: 0111000149 r: 01110010 50

81|82
o I |
48] 0 1 LOAD 0
3
49|11 [0 Input: Oq 1
50(0 |1
Bucket0 82 1
Mask Table Match Table

Fig. 11. Encoding False Positives. Suppose bucket 0 has 2 literals, ‘rg’ and
‘pq’, and the input string is ‘Og’. Because ‘0’ has the same lower 6 bits as
‘p’, so it matches with this bucket. Obviously, it is a false positive match.

false positives as EFP(Encoding False Positive), which are
produced because some information is lost after compress-
ing the mask table. Theoretically speaking, though the two
encoding methods generate two types of mask table with the
same size, the decomposition-based encoding introduces much
fewer EFPs than the compression-based encoding, because
Harry12b (Harry with decomposition-based encoding) would

load double vectors from the mask table. Besides, although
they introduce EFPs that may degrade the performance, Harry
still benefits a lot because they compress the mask table and
make it possible to implement the efficient column-vector-
based matching algorithm.

E. Select Between the Two Encoding Methods

We have introduced two encoding methods, both of which
have their advantages and disadvantages. The compression-
based encoding needs no more SIMD operations but it intro-
duces more EFPs. The decomposition-based encoding intro-
duces much fewer EFPs but needs more SIMD operations.
How to select a proper encoding is a topic worth discussing.
In Fig. 11, if the bucket contains only ‘rg’, then bit T'[48][0]
will change from O to 1 and the false positive will not appear.
Generally speaking, the more zero bits there are in mask table,
the more false positives there will appear during matching.
In practice, Harry decides on which method to take by
comparing the zero bit rates of Harry6b and Harry12b, which
we mark as zrg, and zrig,. It executes a heuristic selection
algorithm. When zrg, is relatively low, which means that
the compression-based encoding wouldn’t introduce too many
false positives, Harry will select the compression-based encod-
ing (Harry6b) because it needs less SIMD operations. When
zrep 18 relatively high, which means that the compression-
based encoding would produce much more false positives
than the decomposition-based encoding, Harry would select
the decomposition-based encoding (Harry12b).

VI. THE SHUFFLE-BASED SHIFT IMPLEMENTATION
A. Problem Analysis

As shown in Fig. 6, with the column-vector-based matching
algorithm, the number of SIMD operations is independent of
m, the number of input characters processed in an iteration.
Theoretically for Harry, the larger m is, the higher the match-
ing performance is, as long as condition (7) is guaranteed. For
AVXS512 Harry where L = 512, m can be 56. So in Fig. 6(C),
Harry would shift 56x8 = 448 bits in a 512-bit-long SIMD
vector for 7 times, among which the shift distances are 8,
16, 24, 32, 40, 48, and 56 bits respectively. Unfortunately,
VPSLLDQ (the shift instruction in AVX512) cannot shift bits
across 128-bit boundaries and lots of bits will be lost after
shifting. Take the example of the first time shift whose shift
distance is just 8 bits, the shift result is shown in Fig. 12.

As for the other shifts, there are even more lost bits
because their shift distances are longer than the first time shift.
Too many lost bits would cause unacceptable false positives,
making it impossible to implement the matching algorithm in
AVX512, the most advanced SIMD instruction set.

B. Use Shuffle Instruction to Shift

We have mentioned VPERMB, the shuffle instruction of
AVX512, in Fig. 7(A). It loads specified elements from a
source vector into a destination vector, according to an index
vector. Actually, we can leverage this instruction to implement
SHIFT. Take AVXS512 Harry as an example, we operate as
shown in Fig. 13.

63 55 48 32 16 0
\ \ \ \ \ ,
[T REREET oL Tl oseere shitng
63 55 48 32 16 0
} t t t } |
TTTTTTTEEETTTT I-T T I-T T] ® Expected Resutt
63 55 48 32 16 0
} ! ! ! ! {
[TTTTTTTEEEToET Jolw] o[« T] © ActualResut

Fig. 12. Shift Result in AVX512. Shift 56 bytes (448 bits) in a 64-byte (512-
bit) SIMD vector. The expected shift result is like (B) with no bits lost. But
the actual shift result is like (C) with 3 bytes at 16-byte (128-bit) boundaries
(16, 32, 48) lost.

63 55 48 32 16 0

1 1 1 1 1 1
L } } } t |
| | | | | | | Source

(T 1T Ll [
2

2
LT T T 11 T [6sl-]e8]ar] .- [32]31] ... [16]15] .. [0] | index
Vv vV N\
LT T EEE - -] T]

Fig. 13. Shuffle Shift. The data bytes are located in source vector as the
low 56 bytes, whose indices are 0~55. By putting the index sequence 0~55
at indices 1~56 of the index vector and calling VPERMB, we take 0~55
elements of the source vector and put them at indices 1~56 in destination
vector. This plays the same role as shift.

| | |Destination

VII. EVALUATION
A. Environment

We evaluate Harry on a commodity CPU. We conduct
experiments on a Linux server (Ubuntu 20.04) with Intel
Xeon Gold 6348 (2.60GHz, 2 sockets, 28 cores per socket)
with 32GB DDR4 memory. The processor has the support of
AVX512. The encoding methods are implemented in C++. The
column-vector-based matching algorithm is implemented in C.
We use GCC 9.4.0 to compile them without any optimization.

B. Dataset

To evaluate the efficiency of Harry, we conduct experiments
on a variety of real-world literals and input strings. Liter-
als are collected from OWASP ModSecurity Core Rule Set
v3.3.2 [45], and Snort Emerging Threats Rules v2.9.0 [46].
Both ModSecurity and Snort are DPI-based applications. Input
strings are collected from IXIA HTTP raw packets and Alexa
Non-HTTP raw packets. Also, we have generated a random
input string for evaluation. We present them in Table II.

TABLE II
INPUT STRING
[Type [Size |
Random 763 KB
IXIA HTTP Messages 121 MB
Alexa non-HTTP Messages 4MB

C. Performance and Scalability

To demonstrate the performance and scalability of Harry,
we conduct 6 groups of experiments. We classify the input
strings into 3 types, which are http packets, non-http packets

and random bytes. For each type of input string, we match
it with different kinds of literal rule sets, including rule sets
collected from ModSecurity and Snort. And for a certain
kind of rule set, we extract several sub-sets, each containing
different numbers of rules, ranging from dozens (small-scale),
hundreds (medium-scale) to thousands (large-scale). Apart
from Harry, we have also tested Harry6b and Harry12b to
verify the correctness of our heuristic encoding selection
algorithm. We conduct each experiment 1000 times to get
the average throughput. The experimental result is shown in
Fig. 14 (ModSecurity Rule Set) and Fig. 15 (Snort Rule Set),
from which we can see that Harry is faster than FDR and AC
in all cases.

In Fig. 14(a) with HTTP packets as the input, Harry achieves
1.06x~1.63x performance of FDR and 26x~38x that of AC.
In Fig. 14(b) with Non-HTTP packets as the input, Harry
achieves 1.14x~1.62x performance of FDR and 25x~45x that
of AC. In Fig. 14(c) with random bytes as the input, Harry
achieves 1.11x~2.09x performance of FDR and 36x~52x that
of AC. Fig. 15 presents a similar result. Also, we see that
Harry can always accord with the better one between Harry6b
and Harry12b, which demonstrates that our encoding selection
algorithm works correctly and effectively.

Besides, observing the performance of Harry6b and
Harry12b, we can find that in most cases, Harry6b is faster
than Harry12b when there are less than 1000 rules, but much
slower than Harry12b if rules keep increasing. This matches
with what we have discussed about the advantages and dis-
advantages of two encoding methods. Compared to Harry12b
(decomposition-based encoding), Harry6b (compression-based
encoding) introduces more EFPs but needs no additional
SIMD operations, so it outperforms Harry12b in small-scale
literal rule sets because dozens of literals won’t introduce
many EFPs. But as the rule set gets larger, the overhead caused
by more and more EFPs finally defeat the benefit brought by
its fewer SIMD operations.

D. False Positives

We have analyzed that both Harry6b and Harry12b intro-
duce additional false positives because they compress the mask
table and some information is lost. We also conduct experi-
ments to compare the number of false positives of Harry6b,
Harry12b, and Harry. We still use Snort and ModSecurity
rule sets and take Alexa Non-HTTP packets as the input
string, the experimental result is shown in Fig. 16. It can
be seen that as the number of literals increases, the number
of false positives of both Harry6b and Harryl2b increases,
but the former increases much faster. With the literal rules
increasing, the false positives of Harry6b would increase to
be unacceptable. So Harry will select Harry6b when there are
not so many literal rules because Harry6b needs less SIMD
operations, but it selects Harryl2b when literals get more,
because Harry12b has much fewer false positives.

70 80

mHarry ®Harryéb mHarryl2b wFDR ®AC

mHarry wHarry6b ®Harryl2b = FDR mAC WHarry WHarry6b ®Harryl2b =FDR WAC
50 60 70
g T so g%
£ 40 = 2
c} 8 8 so
= < 40 =
2 30 H F
% £ £
Ej ® 30 3
3 3 E
£ 2 £ 3 30
- F 2 E
20
10 10 0
0 o [
10 50 100 500 1000 1500 2000 2500 3000 10 50 100 500 1000 1500 2000 2500 3000 10 50 100 500 1000 1500 2000 2500 3000
Number of Literal Rules Number of Literal Rules Number of Literal Rules
(a) IXIA HTTP Packets (b) Alexa Non-HTTP Packets (c) Random Bytes

Fig. 14. ModSecurity Core Rule Set v3.3.2

50 60 70
WHarry ®Harryéb ® Harryl2b «FDR ®AC mHarry ®Harryéb Harryl2b «FDR ®AC mHarry ®Harry6b Harryl2b =FDR ®AC
45
40 50 0
- =z 2 s0
H 35 Z a0 z
o o
g 30 e < a0
5 5
_‘?n 25 E- 30 %
Y] 2 30
2 < 2
E s e 2 F
10 0 o
5
0 0 0
10 S0 100 500 1000 1500 2000 2500 3000 10 50 100 500 1000 1500 2000 2500 3000 10 50 100 500 1000 1500 2000 2500 3000
Number of Literal Rules Number of Literal Rules Number of Literal Rules
(a) IXIA HTTP Packets (b) Alexa Non-HTTP Packets (c) Random Bytes

Fig. 15. Snort ET-Open Rule Set v2.9.0

25 VIII. CONCLUSION
——— Harry6b In this paper, we propose Harry, a highly-optimized and
20 Harry12b scalable SIMD-based multi-literal matching engine. We de-

sign a column-vector-based shift-or matching algorithm to
deeply exploit the data-level parallelism of SIMD and improve
SIMD vector utilization. Harry needs only 0.43~0.71 SIMD
operations per input character, much more efficient than FDR

15 A

Number of False Positives (x10000)

10 A
that needs 3 SIMD operations per character. Also, the SIMD
s | i vector utilization increases from 50% to 87.5%. To support
P ey the matching algorithm, we propose two encoding methods,
lem==" . .
0 : suitable for small-scale and large-scale rule sets respectively.
0 500 1000 1500 2000 2500 3000 Besides, we have overcome the issues of VPSLLDQ, the
Number of Literal Rules SIMD shift instruction, by introducing a novel way to imple-
(a) ModSecurity CRS v3.3.2 ment shift with VPERMB, the SIMD shuffle instruction that
160 is originally used to reorder elements. Finally, we implement
5140 ——— Harry6b Harry, FDR, and AC on commodity CPU with AVX512
S Harry12b SIMD support. We compare Harry to FDR, the state-of-the-art
107 multi-literal matching engine integrated in Hyperscan and AC,
£ 100 1 the classic widely-used multi-literal matching algorithm. The
8 &0 | evaluation shows that Harry can reach a throughput of 30~70
3 Gbit/s, up to 52x that of AC and 2.09x of FDR. It has been
£ %0 successfully deployed in Hyperscan.
E * ACKNOWLEDGMENT
= The work was supported by the National Natural Science
o 500 1000 1500 2000 2500 3000 Foundation of China under Grant No. 61972101, and was
Number of Literal Rules performed when Hao Xu was an intern at Intel. Jin Zhao is
(b) Snort ET-Open v2.9.0 the corresponding author.

Fig. 16. False Positives of Harry6b, Harry12b and Harry.

[1]

[2]

[3]

[4]
[5]
[6]
[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

T. Bujlow, V. Carela-Espaiiol, and P. Barlet-Ros, “Independent compari-
son of popular dpi tools for traffic classification,” Comput. Netw., vol. 76,
pp. 75-89, 2015.

A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral, “Deep packet
inspection as a service,” in Proc. ACM Int. Conf. Emerg. Netw. Exp.
Technol. (CoNEXT), 2014, pp. 271-282.

R. T. El-Maghraby, N. M. Abd Elazim, and A. M. Bahaa-Eldin, “A
survey on deep packet inspection,” in Int. Conf. Comput. Eng. Syst.
(ICCES), 2017, pp. 188-197.

Snort. [Online]. Available: https://snort.org/

Suricata. [Online]. Available: https://suricata.io/

Zeek. [Online]. Available: https://zeek.org/

M. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and K. Park,
“Kargus: A highly-scalable software-based intrusion detection system,”
in Proc. ACM Conf. Comput. Commun. Secur., Oct. 2012, pp. 317-328.
Modsecurity. [Online]. Available:
https://github.com/SpiderLabs/ModSecurity/

Shorewall. [Online]. Available: http://shorewall.net/

nDPI. [Online]. Available: https://www.ntop.org/products/deep-packet-
inspection/ndpi/

Capacity Planning for Snort IDS: Bilbous, Not Tapered. [Online].
Available: https://mikelococo.com/2011/08/snort-capacity-planning/
The new world of 400 gbps ethernet. [Online]. Avail-
able: https://www.accton.com/Technology-Brief/the-new-world-of-400-
gbps-ethernet/

“IEEE Standard for Ethernet - Amendment 10: Media Access Control
Parameters, Physical Layers, and Management Parameters for 200 Gb/s
and 400 Gb/s Operation,” [EEE Std. 802.3bs-2017 (Amendment to
IEEE 802.3-2015 as amended by IEEE’s 802.3bw-2015, 802.3by-2016,
802.3bq-2016, 802.3bp-2016, 802.3br-2016, 802.3bn-2016, 802.3bz-
2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3-2015/Cor1-2017),
pp. 1-372, 2017.

H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, “Operational
experiences with high-volume network intrusion detection,” in Proc.
11th ACM Conf. Comput. Commun. Secur., 2004, pp. 2—11.

C. Clark and D. Schimmel, “Scalable pattern matching for high speed
networks,” in Proc. 12th IEEE Symp. Field-Programmable Custom
Comput. Mach., 2004, pp. 249-257.

R. Sidhu and V. Prasanna, “Fast regular expression matching using
fpgas,” in 9th IEEE Symp. Field-Programmable Custom Comput. Mach.
(FCCM’01), 2001, pp. 227-238.

D. Sidler, Z. Istvan, M. Owaida, and G. Alonso, “Accelerating pattern
matching queries in hybrid cpu-fpga architectures,” in Proc. ACM Int.
Conf. Manag. Data (SIGMOD), 2017, pp. 403-415.

N. Cascarano, P. Rolando, F. Risso, and R. Sisto, “Infant: Nfa pat-
tern matching on gpgpu devices,” SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 5, pp. 20-26, Oct. 2010.

Z. Zhao and X. Shen, “On-the-fly principled speculation for fsm
parallelization,” SIGPLAN Not., vol. 50, no. 4, pp. 619-630, Mar. 2015.
Z. Zhao, B. Wu, and X. Shen, “Challenging the “embarrassingly se-
quential”: Parallelizing finite state machine-based computations through
principled speculation,” in Proc. 19th Int. Conf. Architect. Support
Program. Lang. Operating Syst., 2014, pp. 543-558.

Y.-H. Yang and V. Prasanna, “High-performance and compact architec-
ture for regular expression matching on fpga,” IEEE Trans. Comput.,
vol. 61, no. 7, pp. 1013-1025, 2012.

N. Yamagaki, R. Sidhu, and S. Kamiya, “High-speed regular expression
matching engine using multi-character nfa,” in Proc. Int. Conf. Field
Programmable Logic and Applications, 2008, pp. 131-136.

M. Avalle, F. Risso, and R. Sisto, “Scalable algorithms for nfa multi-
striding and nfa-based deep packet inspection on gpus,” IEEE/ACM
Trans. Netw., vol. 24, no. 3, pp. 1704-1717, 2016.

E. Sadredini, D. Guo, C. Bo, R. Rahimi, K. Skadron, and H. Wang,
“A scalable solution for rule-based part-of-speech tagging on novel
hardware accelerators,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2018, p. 665-674.

S. Wang, M. Zhang, G. Li, C. Liu, Y. Liu, X. Jia, and M. Xu,
“Making multi-string pattern matching scalable and cost-efficient with
programmable switching asics,” in Proc. IEEE INFOCOM, 2021, pp.
1-10.

[26]

(271

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

L. Vespa, N. Weng, and R. Ramaswamy, “Ms-dfa: Multiple-stride pattern
matching for scalable deep packet inspection,” Comput. J., vol. 54, no. 2,
pp. 285-303, 2011.

E. Sadredini, R. Rahimi, M. Lenjani, M. Stan, and K. Skadron, “Impala:
Algorithm/architecture co-design for in-memory multi-stride pattern
matching,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit.,
2020, pp. 86-98.

Pcre: Perl compatible
https://www.pcre.org/
Google RE2. [Online]. Available: https://github.com/google/re2/

M. Becchi and P. Crowley, “A-dfa: A time- and space-efficient dfa
compression algorithm for fast regular expression evaluation,” ACM
Trans. Archit. Code Optim., vol. 10, no. 1, Apr. 2013.

J. Qiu, Z. Zhao, and B. Ren, “Microspec: Speculation-centric fine-
grained parallelization for fsm computations,” in Proc. Int. Conf. Parallel
Archit. Compilation Techn. (PACT), 2016, pp. 221-233.
Scaling cloudflare’s massive walf. [Online].
http://www.scalescale.com/scaling-cloudflaresmassive-waf/
X. Wang, Y. Hong, H. Chang, K. Park, G. Langdale, J. Hu, and H. Zhu,
“Hyperscan: A fast multi-pattern regex matcher for modern cpus,” in
Proc. NSDI, 2019, pp. 631-648.

S. K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brumley, and D. G. An-
dersen, “Splitscreen: Enabling efficient, distributed malware detection,”
J. Commun. Netw., vol. 13, no. 2, pp. 187-200, 2011.

T. Qiu, X. Yang, and B. Wang, “Filtering techniques for regular
expression matching in strings,” in Database Systems for Advanced
Applications, C. Liu, L. Zou, and J. Li, Eds. Springer International
Publishing, 2018, pp. 118-122.

B. Choi, J. Chae, M. Jamshed, K. Park, and D. Han, “Dfc: Accelerating
string pattern matching for network applications,” in Proc. NSDI, 2016,
pp. 551-565.

S. Antonatos, K. G. Anagnostakis, and E. P. Markatos, “Generating
realistic workloads for network intrusion detection systems,” in Proc.
4th Int. Workshop Softw. Perform., 2004, pp. 207-215.

P-c. Lin, Z.-x. Li, Y.-d. Lin, Y.-c. Lai, and F. C. Lin, “Profiling and
accelerating string matching algorithms in three network content security
applications,” IEEE Commun. Surveys Tuts., vol. 8, no. 2, pp. 24-37,
2006.

A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, vol. 18, no. 6, pp. 333-340, Jun.
1975.

K. Qiu, H. Chang, Y. Hong, W. Zhu, X. Wang, and B. Li, “Teddy: An
efficient simd-based literal matching engine for scalable deep packet
inspection,” in Proc. 50th Int. Conf. Parallel Process., 2021.

X. Wang, B. Liu, J. Jiang, Y. Xu, Y. Wang, and X. Wang, “Kangaroo:
Accelerating string matching by running multiple collaborative finite
state machines,” IEEE J. Sel. Areas Commun., vol. 32, no. 10, pp. 1784—
1796, 2014.

Snort community rules. [Online].
https://www.snort.org/downloads/#rule-downloads/

K. Fredriksson, “Shift-or string matching with super-alphabets,” Infor-
mation Processing Letters, vol. 87, no. 4, pp. 201-204, 2003.

S.-I. Oh, I. Lee, and M. S. Kim, “Fast filtering for intrusion detection
systems with the shift-or algorithm,” in Proc. Asia-Pacific Conf. Com-
mun. (APCC), 2012, pp. 869-870.

regular expressions. [Online]. Available:

Available:

Available:

Owasp modsecurity core rule set. [Online]. Available:
https://coreruleset.org/installation/
Snort emerging threats rules. [Online]. Available:

https://rules.emergingthreats.net/open/snort-2.9.0/rules/

