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Abstract—Deep Packet Inspection (DPI) has been one of the
most significant network security techniques. It is widely used to
identify and classify network traffic in various applications such
as web application firewall and intrusion detection. Different
from traditional packet filtering that only examines packet
headers, DPI detects payloads as well by comparing them with an
existing signature database. The literal matching engine, which
plays a key role in DPI, is the primary determinant of the system
performance. FDR, an engine that utilizes 3 SIMD operations to
match 1 character with multiple literals, has been developed and
is currently one of the fastest literal matching engines. However,
FDR has significant performance drop-off when faced with small-
scale literal rule sets, whose proportion is more than 90% in
modern databases. In this paper, we designed Teddy, an engine
that is highly optimized for small-scale literal rule sets. Compared
with FDR, Teddy significantly improves the matching efficiency
by a novel shift-or matching algorithm that can simultaneously
match up to 64 characters with only 15 SIMD operations. We
evaluate Teddy with real-world traffic and rule sets. Experimental
results show that its performance is up to 43.07x that of Aho-
corasick (AC) and 2.17x that of FDR. Teddy has been successfully
integrated into Hyperscan, together with which it is widely
deployed in modern popular DPI applications such as Snort and
Suricata.

Index Terms—network security, DPI, SIMD, parallel comput-
ing

I. INTRODUCTION

W ITH the development of network security, features such
as traffic classification, intrusion detection systems

(IDS) [2], [3], and web application firewalls (WAF) [4], [5]
have been broadly deployed in network systems [6]. The core
of these features is traffic identification, which is provided by
Deep Packet Inspection (DPI) [7]–[10]. Thus DPI technology
has been widely used in applications such as Linux L7-
Filter, Snort [2], ModSecurity [5], Zeek [11] and Suricata [3].
It makes the identification by examining packet payloads,
searching them for specific regular expression (regex) rules,
with a regex matching engine [12]–[15].
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There is no doubt that the efficiency of the regex matching
engine determines the performance of DPI system. To speed
up regex matching, there is a trend toward using accelerators,
such as GPU/NPU/FPGA [6], [16]–[25]. Nevertheless, most
of these solutions suffer from one or more following short-
comings: 1) high capital costs, 2) insufficient memory to hold
a large number of rules and 3) hard to be virtualized and pro-
vided as cloud-based middlebox services. While performance
does improve, these solutions are rarely deployed. It is still
the software regex matching algorithms running on CPUs that
are adopted in most real scenarios.

However, in spite of continuous efforts, the performance of
software regex matching algorithms [20], [21], [26]–[30] is
still not satisfying in today’s high bandwidth networks [31]–
[37]. A recent study has shown that PCRE, a regex matching
engine that is widely adopted by certain popular DPI appli-
cations such as Snort and Suricata, needs more than 6, 942
seconds to perform 1GB traffic matching, while this traffic
has only 818, 682 packets [38]. Thus, pure regex matching is
not a workable method, and taking string matching to pre-filter
the packets has been proved to be the best remedy [39], [40],
because string matching, or formally called literal matching,
is two orders of magnitude faster than regex matching [41].
Nowadays, most real-world DPI applications has adopted this
pre-filtering strategy [40]. They match specified literals before
matching the regex, and the regex matching starts only if the
literals are matched successfully. Therefore, literal matching
also plays an important role in DPI system [42], [43], [43]–
[45].

Literal matching, also called string searching or string
matching, is a typical class of string algorithms. There are
many literal matching algorithms, among which AC is the
most classic one and FDR is the fastest one running on
CPUs. FDR is integrated in Hyperscan [38], an efficient regex
matching engine, and works at pre-filtering stage. It is based
on the well-known bitwise-based Shift-Or algorithm [46]–[48]
and can support matching multiple literals simultaneously,
which we call multi-literal matching.

Nonetheless, FDR has a significant issue in small-scale
literal rule sets. A small-scale literal rule set is empirically
defined as a rule set whose number of literals is less than 60
and where most of the literals are shorter than 8 bytes. It is
reported that small-scale literal rule sets appear frequently in
the field of DPI. As an example, more than 90% of the rule
sets in ModSecurity are small-scale ones [49].

When confronted with small-scale literal rule sets, FDR has
an obvious problem. Since FDR has to do 8 times of shift and
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(a) The first letter is ’a’, which can
be matched by the edge ∅ → a, then
node a is activated.
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(b) The second letter is ’p’, which can
be matched by the edge a → ap, then
node ap is activated.
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(c) The third letter is ’a’, which can
be matched by the edge ap → apa,
then node apa is activated.
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(d) The last letter is ’h’, which can be
matched by the edge apa → apah,
then node apah is activated. And this
result will be reported.

Fig. 1. An example of trie with literals ‘aphp’, ‘ahap’, ‘apah’. The nodes with double circles contain the literals. The nodes with single circle contain the
prefixes of the literals. The edges between nodes indicate the search conditions. Level p indicates that p characters have been matched. We also give the
matching process in detail when the input string is ‘apah’. We initially activate the root node ∅. During matching ‘apah’ with the literals, node a, ap, apa,
apah will be activated in sequence. We use the red circle to indicate that the node is activated right now.

or operations no matter whether or not a literal is shorter than
8 bytes, it introduces a considerable amount of unnecessary
computation. The unnecessary computation finally leads to a
low data-level parallelism that FDR can only match 1 input
byte per 3 SIMD operations.

In order to solve this problem, we proposed Teddy, a
novel multi-literal matching engine with a new SIMD-based
matching algorithm specializing in small-scale literal rule sets.
Teddy has a notable performance, up to 43.07x that of AC and
2.16x that of FDR, when dealing with small-scale literal rule
sets.

The main contributions of this paper are presented as
follows.

• We have proposed a new suffix-based matching strategy
that can largely reduce the number of shift and or
operations.

• We have designed a high-performance SIMD-based shift-
or matching algorithm that can simultaneously match up
to 64 characters with only 15 SIMD operations.

• We have proposed a half-byte encoding method with
which Teddy can be implemented on commodity CPUs.

• We found that a drawback of the shift instruction in
AVX512 SIMD instruction set may cause plenty of false
positives that influence Teddy’s performance. And we in-
troduced reinforced mask to reduce these false positives,
which significantly improved Teddy’s performance by up
to 74% in small-scale literal rule sets.

• We implemented Teddy with AVX512 SIMD instruction
set and evaluated it with real-world network traffic and
DPI literal rules. We integrated Teddy into Hyperscan,
together with which it has been successfully deployed
in several famous DPI applications such as Snort and
Suricata.

This work is an extended version of our prior conference
paper [1]. The content extended in this paper includes:

• We found the underlying drawback of the shift instruction
in AVX512 SIMD instruction set and the false positives
it caused. We then introduced reinforced mask to reduce

these false positives and improved Teddy’s performance
by up to 74%.

• We conducted two more groups of experiments. One
was to compare the number of false positives with and
without our new grouping strategy, so we could show
the effectiveness of the strategy. The other was to com-
pare Teddy with FDR from more dimensions, not only
throughput but also false positives, shift-or matching time
and exact matching time. This comprehensive analysis
clearly demonstrates why Teddy outperforms FDR in
terms of speed.

The rest of the paper is organized as follows. Section II
introduces related work. Section III gives the overview design
of Teddy. Section IV describes the new suffix-based match-
ing strategy and grouping algorithm. Section V explains the
SIMD-based matching algorithm and the half-byte encoding
method. Section VI gives a detailed description of reinforced
mask. Section VII evaluates Teddy. Finally, Section VIII gives
a conclusion.

II. RELATED WORK

A. Prefix-based literal matching

Before we give detailed information of Shift-Or, we in-
troduce the prefix-based literal matching first. Literal match-
ing [50]–[52], also called string searching or string matching,
is an important class of string algorithms. Literal matching
tries to find a place where strings (or called literals) are found
within a longer input string. For example, let’s search for the
pattern ap’ within an input string aphpap’. The first occurrence
of ‘ap’ is at the first byte, and the second occurrence is at the
fifth byte. The naı̈ve literal matching algorithm, which checks
the place where the literal occurs inside the input string one
byte by one, is an inefficient literal matching algorithm.

The prefix-based matching algorithms, such as Knuth-
Morris-Pratt (KMP) [53], Shift-Or [46] and Aho-
Corasick (AC) [50], are proven as successful strategies
in practice. Formally, the prefix of a string is p letters (p ≤ m
where m is the length of the string) that begins from the first
byte of the string. As an example, ‘aphpap’ has the following
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TABLE I
TERMS OF DEFINITION

Notation Description

n The number of literals

m The length of input string s

l The maximum length of literals

wi The i-th(i ≤ n) literal

li The length of literal wi

si The i-th(i ≤ m) character of input string s

Λ The set of ASCII characters

wi,j The j-th(j ≤ wi) character in literal wi

p The number of buckets

qv The number of literals in v-th(v ≤ p) bucket

rv The maximum length of literals in v-th(v ≤ p) bucket

λv
j The set of j-th(j ≤ rv) characters in v-th(v ≤ p) bucket

prefixes: ‘a’, ‘ap’, ‘aph’, ‘aphp’, ‘aphpa’. The prefix tree,
also called trie, is a kind of ordered search tree that is used
to store prefixes and perform prefix-based literal matching.
Prefixes are stored in a top-to-bottom manner. We give a
trie example with input string ‘apah’ and 3 literals ‘aphp’,
‘ahap’, ‘apah’ in Figure 1 to show a prefix-based literal
matching.

We give the terms of definition in Table I.

B. Classical Shift-Or algorithm

Shift-Or algorithm uses bitwise techniques to check whether
or not the given literal is present in the input string. Both FDR
and Teddy are based on it.

Suppose the input string s is ‘teddy’ and the literal w is
‘ddy’. Shift-Or firstly builds, according to the literal, a mask
table as shown in Figure 2.

d d y

0x00
...
d

ASCII
1
1
0

1
1
0

1
1
1

... 1 1 1
y 1 1 0
... 1 1 1
0xff 1 1 1

1 2 3Offset
Literal

Fig. 2. Mask table. Each bit in this table indicates whether or not an ASCII
character is at certain position of the literal. For example, the bit 0 in that
orange cell indicates that character ‘d’ is the second character of literal ‘ddy’,
the bit 1 in that purple cell indicates that character ‘y’ is not the first character
of ‘ddy’.

We write this table as T . For c (c ∈ λ where Λ is the set of
ASCII characters), we say that Tc is the mask of c. If c = wk,
we set Tc,k = 0, else we set Tc,k = 1 (k ∈ [1, l], where l is
the length of literal w). Tc,k = 0 indicates that c is the k-th
character of literal w.

For each input character si(i ∈ [1,m], where m is length
of the input string), we load Tsi to make a match table. This
table indicates the match result, as shown in Figure 3(a).
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(a) Match table. It can be seen
that a diagonal line passes 3
zero bits which are Ts3,1, Ts4,2,
Ts5,3. This means that the third,
fourth and fifth characters of in-
put string are same as the first,
second and third characters of the
literal. Thus the literal is matched
successfully.
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(b) From top to bottom, we shift
masks 4, 3, 2, 1, 0 times respec-
tively to align the corresponding
bits on the same diagonal. Then
we perform or operations to get
the result vector. The zero bit
in the result vector indicates a
match.

Fig. 3. Match table and the shift-or process.

From this figure we know that the literal is matched suc-
cessfully if l zero bits are on a diagonal line, where l is the
literal length. To recognize this situation, we can shift masks
in the match table to align the zero bits on the same diagonal
and perform or operations to find the match position, as shown
in Figure 3(b).

C. FDR

FDR extends Shift-Or algorithm to support multi-literal
matching. For mask table, it sets Tc,k = (b1b2 . . . bn)2 and
bj = 0 only if c = wj,k(j ∈ [1, n], k ∈ [1, l], where n is
the number of the literals and l is the maximum length of the
literals). Tc,k,j = 0 indicates that c is the k-th character of the
j-th literal.

After building the mask table, load, shift and or operations
are performed. This procedure is much like that of single-
literal matching. Difference is that the mask has n · l bits and
there are n bits being shifted each time, where n is the number
of the literals and l is their maximum length.

FDR fixes values of both n and l to 8, so a mask would
contain 64 bits, which is not too long to lose some bits during
shift operations. And if n > 8 or l > 8, it takes the following
two strategies:

1) Grouping: if n > 8, FDR will group them into 8 buckets.
2) Truncation: if l > 8, FDR will truncate the literal and

only match its 8-byte-long suffix during shift-or matching
process.
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The grouping method is straight forward. We give an
example in Figure 4. Theoretically, FDR takes 8 buckets, each
of which has q1, q2, . . . , q8 literals. We define wv

1 , w
v
2 , . . . , w

v
qv

are literals in the v-th bucket, and we define a character set
λv
k = ∪qvi=1(w

v
i,k), which contains the k-th characters of all

literals in the v-th bucket v. Accordingly, FDR defines the
mask table as Tc,k = (b1b2 . . . b8)2, where bv = 0 only if
c ∈ λv

k.
Regardless of the number of the literals or the maximum

literal length, masks in FDR will always be of 8 × 8 = 64
bits, with the grouping strategy allocating the literals into 8
buckets and the truncation strategy taking only the 8-byte-long
suffixes of those literals for shift-or matching.

a | p

p | h

Group 1 ap  ph

b

h

Group 2 bh

level 1

level 2

a 
p b

 
ap ah
pp ph

 

bh

Fig. 4. An example of grouping. We group ‘ap’ and ‘ph’ into Bucket 1, ‘bh’
into Bucket 2. The left node at level 1 can accept both characters ‘a’ and ‘p’,
and the left node in level 2 can accept both characters ‘p’ and ‘h’. Therefore,
all of ‘ap’, ‘pp’, ‘ah’ and ‘ph’ can be matched into Bucket 1. However, only
‘ap’,‘ph’ are true positive results, ‘pp’,‘ah’ are false positive results.

D. False-positive results

Obviously, the aforementioned two strategies may generate
false positive results if we define the real matching results as
Ground Truth:

1) Grouping As shown in Figure 4, false positive results
will be probably generated after grouping.

2) Truncation The 8-byte-long suffix of a literal is matched
but the prefix is not matched. This can also generate false
positives.

When a positive result occurs in certain bucket, the positive
piece of string will be compared with all literals in that bucket
to check whether or not it is a true positive. In contrast
to shift-or matching, this process is referred to as exact
matching. Therefore if the positive is false, exact matching
will be a waste of time. Obviously, a well-designed grouping
strategy and truncation length can decrease the number of false
positives and increase system’s overall performance.

E. Motivations

FDR includes two stages of literal matching, which are shift-
or matching and exact matching. In shift-or matching process,
it matches the 8-byte-long suffixes of the literals. If a literal is
shorter than 8, FDR would pad it with wildcards. Therefore it
always needs 8 load, 8 shift and 8 or operations per iteration.
When confronted with small-scale literal rule sets where most
of the literals are shorter than 8 bytes, this can be quite a
waste of computation resources. So we would like to take a

σ-suffix-based matching strategy, which means that in shift-or
matching process we match only the σ-byte-long suffixes of
the literals. With small-scale literal rule sets, we would adjust
σ from 1 to 4 and conduct experiments to find the best value
of σ.

Also, after changing the shift-or matching strategy, the
corresponding grouping strategy should also be adjusted be-
cause a well-designed grouping method could reduce the
false positives. The grouping strategy of FDR follows two
guidelines: i) group the literals of a similar length into the
same bucket. ii) avoid grouping too many short literals into
one bucket. Apparently, both of them are for general literal
rule sets. For small-scale rule sets, we would design a suffix-
based grouping strategy, which allocates literals that have
similar σ-byte-long suffixes into the same bucket. We will
demonstrate the correctness of this grouping strategy and
conduct experiments to showcase its effectiveness in reducing
false positives.

III. THE TEDDY ARCHITECTURE

The core objective of Teddy is to offer an efficient multi-
literal matching engine that has excellent performance in
dealing with small-scale literal rule sets. In this section, we
will show the overview design of Teddy and give a brief
introduction to its components.

Teddy’s overview architecture is shown in Figure 5. Teddy
works through two stages: compile time and run time. During
compile time, Teddy groups literals into 8 buckets and builds
two tables, the mask table and the reinforced mask table, which
will be used in shift-or matching process. During run time,
Teddy experiences two matching stages, shift-or matching
and exact matching. Shift-or matching is used to identify
all possible occurrences of matches, which we refer to as
positives. In contrast, exact matching is employed to filter
out the false positives. In the overall workflow and the exact
matching part, Teddy is identical to FDR. The differences
lie in Teddy’s newly designed suffix-based grouping strategy,
SIMD-based shift-or matching algorithm, encoding method
and reinforced mask.

A. The grouping strategy

Different from FDR’s grouping algorithm, Teddy’s grouping
strategy groups literals by the similarity of σ-byte-long suffixes
of literals. For example, suppose σ = 2, ‘abcde’ is more
similar to ‘efgde’ than ‘abcgf’. So ‘abcde’ and ‘efgde’ will
be assigned into the same bucket. Thus, Teddy uses σ as the
truncation length and matches σ-byte-long suffixes in shift-
or matching process. In small-scale rule sets, this grouping
strategy can significantly reduce false positives.

B. The SIMD-based shift-or matching algorithm

During run time, Teddy matches the literals with the input
string. It will use a SIMD-based shift-or matching algorithm
to match the literals in parallel. For efficiency concerns, the
matching algorithm only matches the σ-byte-long suffixes of
the literals, i.e., the truncation length is σ. During shift-or
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Fig. 5. An overview design of Teddy. Teddy works through two stages: compile time and run time. During compile time, Teddy groups the literals into 8
buckets and builds two tables, a mask table and a reinforced mask table. During run time, Teddy matches multiple literals in parallel with the input string.
The input string first goes through shift-or matching, leaving the possible matched pieces, then exact matching, filtering out the false positives.

matching process, FDR matches 1 character per 3 SIMD
operations, while Teddy can simultaneously match up to 64
characters per 5σ SIMD operations.

C. The encoding method

Although Teddy’s high-efficiency shift-or matching algo-
rithm enhances data-level parallelism, we encountered chal-
lenges while attempting to implement it with modern SIMD
instruction sets. The primary issue is that an SIMD vector is
not long enough to accommodate a column vector of Teddy’s
mask table. Thus we propose a novel encoding method, which
we referred to as half-byte encoding, to compress the mask
table.

D. The reinforced mask

Due to the drawback of the shift instruction in AVX512
SIMD instruction set, Teddy would lose some bits during
shifting the vectors, which then causes lots of false posi-
tives that influence the overall performance. Therefore, we
propose an innovative method to reduce these false positives
by introducing reinforced mask to fill in the missing bits of
information. The reinforced mask significantly reduces false
positives and improves Teddy’s performance by up to 74%.

IV. THE GROUPING STRATEGY

As we have mentioned above, Teddy significantly reduces
false positives in small-scale literal rule sets by designing
a new suffix-based grouping algorithm. In this section, we
will describe this grouping algorithm in detail. We will first
describe the scoring algorithm, which can compute the score
of a bucket that includes several literals. Then we will give
the heuristic greedy algorithm based on the score. At last, we
will give proof of the correctness of our grouping strategy.

A. The score of literals in a bucket

We use a score to indicate the difference degree among
literals in a bucket. The score of a bucket will be increased if
another literal is put into the bucket. The easiest way to define

the score is to count the number of bit 1 for each character in
the σ-byte-long suffix and multiply these numbers to get the
score value. When a new literal is put into the bucket, we use
bit-or operation ‘|’ to calculate the new score of the bucket.
We present the algorithm in Algorithm 14. Also, we give an
example in Figure 6 to show how to calculate the score.

Algorithm 1: SCORE(v)
calculating the score in bucket v

Input: q literals in the bucket
Output: S the score of the bucket

1 wi,j is the j-th character in literal wi

2 li is the length of literal wi

3 σ is the length of suffix
4 | is the bit-or operation
5 COUNT is the number of BIT 1 in a character
6 S ← 1
7 B1, . . . , Bσ ← 0
8 for i from 1 to q do
9 for j from 1 to σ do

10 Bj ← Bj | wi,li−σ+j−1

11 for i from 1 to σ do
12 c← COUNT(Bi)
13 S ← S ∗ c
14 return S

B. The greedy-based merging algorithm

We can use SCORE(v) to calculate the score of a bucket.
In the beginning, n literals are mapped into n buckets. Then,
the heuristic algorithm will iteratively merge n buckets into
p buckets (usually p = 8). In each iteration, the algorithm
always merges two buckets that can result in the minimum
score increasing. Theoretically, suppose there are p buckets
in the current iteration, and each bucket is vi, i ∈ [1, p].
We use vi,j to indicate the merged bucket with vi and
vj . The algorithm will choose two suitable (i, j) that have
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Fig. 6. An example of computing the score of literals in a bucket. We group 4 literals:‘teddy’, ‘daddy’, ‘muddy’, and ‘mommy’ into 1 bucket. We suppose
σ = 3. We first group ‘teddy’ and ‘daddy’. The suffix of these two literals is both ‘ddy’, and the bitwise presentation of ‘d’ and ‘y’ is 011001002 and
011111012. The BIT 1 numbers of ‘d’ and ‘y’ are 3 and 5. We multiply them and get the score 3 ∗ 3 ∗ 5 = 45. Then, we group ‘teddy’, ‘daddy’ with
‘muddy’. Since the suffix of the newly-added literal is the same as the existing suffix, the score is still 45. At last, we group them with ‘mommy’. The bitwise
presentation of ‘m’ is 011011012, and the result of bit-or between ‘d’ and ‘m’ is 011011012. It makes the number of BIT 1 increase to 5. Thus, the score
of the bucket is 5 ∗ 5 ∗ 5 = 125.

the minimum SCORE(vi,j ), ∀i, j ∈ [1, p]. We give detailed
information in Algorithm 21.

Algorithm 2: Grouping n literals into p buckets
Input: n literals
Output: p buckets

1 t is the number of buckets in current iteration
2 b is the minimum score in current iteration
3 t← n
4 while t > p do
5 best←∞
6 for i from 1 to t do
7 for j from i to t do
8 new ← SCORE(vi,j )
9 old← SCORE(vi) + SCORE(vj )

10 if new < old then
11 imin ← i
12 jmin ← j
13 break

14 if best > new − old then
15 best← new − old
16 imin ← i
17 jmin ← j

18 if find imin and jmin in this iteration then
19 merge vimin

with vjmin
into a bucket

20 t← t− 1

21 return p buckets

C. Proof of correctness

We can simply prove that the score can indicate the differ-
ence degree among literals in the bucket.

Proposition 1. Suppose there are two characters α and β.
COUNT is the number of BIT 1 in a character. COUNT(α | β)
≥ COUNT(α) and COUNT(α | β) ≥ COUNT(β).

Proof 1. If α = β, COUNT(α|β) = Count(α) and COUNT(α|
β) = Count(β). If α ̸= β, according to the definition of ‘bit-
or’, BIT 1 in α but not in β and BIT 1 in β but not in α will
all be counted in the COUNT(α |β), which makes COUNT(α |
β) ≥ COUNT(α) and COUNT(α | β) ≥ COUNT(β). Thus,
Proposition 1 is proved.

Proposition 2. Suppose t is the number of buckets. ∀i, j ∈
[1, t], we have SCORE(vi,j ) ≥ SCORE(vi), and SCORE(vi,j ) ≥
SCORE(vj ).

Proof 2. According to Proposition 1 and the line 10 in the
Algorithm 1, B1, . . . , Bσ in bucket vi,j will be greater than
or equal to that in vi and vj . Also, according to the line 11
to 13, S in bucket vi,j will be greater than or equal to vi and
vj . Thus, Proposition 2 is proved.

In brief, Proposition 1 and Proposition 2 show that the
score of buckets is monotonous increasing during the grouping
process. Also, the fewer differences between the two buckets,
the less score increased after their merging. If all literals in
one bucket have the same suffix, the score will never change
during the grouping process. Thus, we can use this score as a
metric in our greedy-based merging algorithm.

V. THE ENCODING METHOD AND SIMD
IMPLEMENTATION

A. Classical mask table

We have given the definition of FDR’s mask table in §II-C.
Teddy’s mask table T is quite similar to that of FDR: we set
Tc,k = (b1b2 . . . b8)2 and bj = 0 only if c ∈ λj

k(c ∈ Λ, j ∈
[1, 8], k ∈ [1, σ] where Λ is the set of ASCII characters).
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B. SIMD parallelizing

After building the mask table, we can propose a SIMD-
based shift-or matching algorithm to match input string with
8 buckets. We give an example in Figure 7. Note that from
now on we only show 1 bucket in our examples and figures,
but don’t forget that there are actually 8 buckets, which means
that every cell in mask table and match table should have 8
bits, i.e., 1 byte.

d d y
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1
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... 1 1 1
y 1 1 0
... 1 1 1

t
e
d 1

1
0

1
1
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1
1
1

d

0
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1
y

1
1

0

1
2
3
4
5

t
e
d 1

1
0

1
1
0

1
1
1

d

0
0

1
y

1
1

0

1
2
3
4
5

1
1
0

=
=
=

match at index 5

(a) Step 1. Load 3 vectors from mask table to match table.

(b) Step 2. Shift column vectors  
     of the match table to align bits 
     on the same diagonal.

(c) Steps 3 and 4. Take the bitwise OR of 
     the 3 vectors as the result vector and 
     find the match position.

t
e
d

1
1
0

1
1
0

1
1
1

d 0 0 1
y 1 1 0

1
2
3
4
5

Fig. 7. An example of SIMD implementation. Suppose the input string is
‘teddy’, σ = 3 and there is only 1 literal, whose 3-byte-long suffix is ‘ddy’,
in the bucket. There are 4 steps: (1) we load {Tt,k, Te,k, Td,k, Td,k, Ty,k}
for k = 1, 2, 3 to get the match table. Briefly speaking, we load vector
{1, 1, 0, 0, 1} for k = 1 and k = 2, and we load {1, 1, 1, 1, 0} for k = 3.
(2) we shift the first vector (the one loaded for k = 1) 2 times, and shift the
second vector (the one loaded for k = 2) 1 time. (3) we take the bitwise OR
of the 3 vectors. (4) we find bit 0 in the result vector. The position of bit 0
indicates the place where suffix ‘ddy’ is matched.

In the above example, the input string ‘teddy’ is quite short,
just 5 bytes, and a vector of the match table has only 5×8 = 40
bits. Usually it can be processed with just 1 iteration of (load,
shift, or) process only if the SIMD vector is longer than 40
bits. Generally speaking, the number of input bytes that can
be processed in an iteration is dependent on the SIMD vector
length. If the SIMD vector can hold L bits, then Teddy can
process L

8 input bytes in an iteration. Given an m-byte-long
input string and σ-byte-long suffix, the shift-or matching steps
are: (1) read L

8 bytes from the input string and take them as
indices to load σ vectors from mask table; (2) shift σ − 1
vectors; (3) take bitwise OR of the σ vectors; (4) find the 0
bits in the result vector which reflect matching positions; (5)
repeat steps (1) to (4) until the whole input string has been
processed.

C. Half-byte encoding

The aforementioned algorithm can largely reduce the load,
shift and or operations. However, there are lots of implemen-
tation issues with deploying it on modern CPUs. In most CPU

architectures, the instruction width of SIMD is limited (e.g.,
SSE only supports 128 bits per vector, AVX2 only supports
256 bits per vector, and AVX512 only supports 512 bits per
vector). This brings challenges to step (1), where we have to
load vectors from columns of the mask table. We give a more
detailed example of this step in Figure 8.

d d y

...
d
e

ASCII
1
0
1

1
0
1

1
1
1

... 1 1 1
t 1 1 0

... 1 1 1
y 1 1 0

1 2 3Offset
Literal

... 1 1 1

1 1 1 1 0 1 0 1
... d e ... t ... y ...

d d y

t
e
d

Input
1
0
1

1
0
1

1
1
1

d 1 1 1
y 1 1 0

1 2 3Offset
Literal

t e d d y

1 1 1 1 0

X

(1)

Y
(2)

(3) SHUFFLE(X, Y) (4)

256 1-byte integers (there are 8 bits in each cell)

Fig. 8. An example of loading a vector from mask table with SIMD instruction
SHUFFLE. SHUFFLE has two parameters: src and ctl. We use X to indicate
src and Y to indicate ctl in this figure. The function of SHUFFLE is parallelly
reading elements in X with indices in Y and putting them into a result vector.
In this example, we use SHUFFLE to load the elements whose indices are
‘t’, ‘e’, ‘d’, ‘d’ and ‘y’ from the mask table. We set the last column vector of
the mask table as X and {‘t’, ‘e’, ‘d’, ‘d’, ‘y’} as Y, then we use SHUFFLE
to get the result vector {1, 1, 1, 1, 0}.

It can be observed that columns of the mask table contain
256×8 = 2048 bits. However, there are no SIMD instructions
that can load elements from a 2048-bit SIMD vector currently
(2048-bit SIMD vector is not supported by current CPUs).
So, we have to design a new encoding method to compress
the mask table.

As shown in Figure 9, we use two 4-bit integers, also
called half-bytes, to indicate a character. Since the range of
4-bit integer is 0 ∼ 15, the mask table has been changed
to T ′

c,k, (c ∈ [0, 15], k ∈ [1, 2σ]). If Tc,k,j = 0, we have
T ′
cl,kl,j

= 0, T ′
ch,kh,j

= 0. cl is the lower 4 bits of character
c and ch is the higher 4 bits of character c. With the new
mask table T ′

c,k, we can use SHUFFLE to load elements in
the half-byte-encoded mask table, as shown in Figure 10.

0x00
...
d
...
y
...

0xff

d

...
4

Suffix

...
6
7
...

1h 2h 2l 3h 3l

d y

1l
6 6 4 7 94d 

0x64
d 

0x64
y

0x79

1 2 3

1 1 1
1 1 1
0 0 1
1 1 1
1 1 0
1 1 1
1 1 1

9
...

0

15

1 1 1 1 1 1
1 1 1 1 1 1
1 0 1 0 1 1
1 1 1 1 1 1
0 1 0 1 1 1
1 1 1 1 0 1
1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1

ASCII
Offset

Suffix
Offset

Half Byte

00

0

0

Fig. 9. An example of half-byte encoding. We use two 4-bit integers, also
called half-bytes, to indicate a character. Thus, the 3-byte-long suffix ‘ddy’
has been converted to 6-integer-long suffix 4,6,4,6,9,7. Also, the elements in
mask table need to be changed. For example, because Td,1 = 0, we have
T ′
4,1l

= 0, T ′
6,1h

= 0.

Since column vectors of the mask table has been shortened
to 16 × 8 = 128 bits. Current CPUs can use SHUFFLE
instruction to load corresponding elements from the mask
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d
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4
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7
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1l 2h 2l 3h 3l

d y

1l
6 6 4 7 94

9
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1 1 1 1 1 1
1 0 1 0 1 1
1 1 1 1 1 1
0 1 0 1 1 1
1 1 1 1 0 1
1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 1 1 1

Offset
Half Byte High
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7 6 6 6 7

4 5 4 4 9

dSuffix

1h 2h 2l 3h 3l

d y

1l

6 6 4 7 94

1 0 1 0 0 1
0 1 0 1 1 1
0 0 0 0 1 1
0 0 0 0 1 1
1 1 1 1 0 0

Offset

Input h l
t 7 5
e 6 5
d 6 4
d 6 4
y 7 9

1 1 1 1 0 1 1 1
... 4 5 6 7 ... 9 ...

1 1 1 1 1 1 0 1
... 4 5 6 7 ... 9 ...

1 1 1 1 0
0 1 1 1 0

X

X

Y

Y

16 1-byte integers

High

Fig. 10. An example of loading vectors from the new mask table with
instruction SHUFFLE. We use SHUFFLE twice to load from mask table
the elements whose indices are half-bytes of ‘t’, ‘e’, ‘d’, ‘d’ and ‘y’. For the
first time, we load from the vector of offset 3h in mask table and indices
are the higher half-bytes of {‘t’, ‘e’, ‘d’, ‘d’, ‘y’}({7, 6, 6, 6, 7}), then we use
SHUFFLE to get the result vector {0, 1, 1, 1, 0}. For the second time, we
load from the vector of offset 3l in mask table and indices are the lower half-
bytes of {‘t’, ‘e’, ‘d’, ‘d’, ‘y’}({4, 5, 4, 4, 9}), then we use SHUFFLE to get
the result vector {1, 1, 1, 1, 0}. At last, we bit-or the two result vectors to get
the final result vector of offset 3, i.e., {1, 1, 1, 1, 0}.

table. For each byte of the suffix, we have to use SHUFFLE
twice: load the vector of higher half-byte and load the vector
of lower half-byte. Then, take bitwise OR of the two vectors.
Using half-byte-encoded mask table will bring additional σ
or operations since we have to take bitwise OR of two half-
byte vectors. Therefore, we need 2σ load operations to load σ
pairs of vectors from the new mask table, σ or operations to
be performed on the σ pairs of vectors and get σ vectors, σ−1
shift operations to shift the σ vectors and σ− 1 or operations
to take the bitwise OR of the shifted vectors.

In conclusion, Teddy needs about 5σ operations to process
L
8 input bytes (L is the SIMD vector length, i.e., the number
of bits an SIMD vector can hold) in an iteration. Specifically,
with AVX512 SIMD instruction set whose SIMD vector can
hold 512 bits and with σ = 3 which has been proved to be the
optimal value of σ by our practical experience, Teddy needs
15 SIMD operations to process 64 input bytes, which is much
more efficient than FDR, who needs 3 SIMD operations to
process 1 byte.

VI. THE REINFORCED MASK

After deploying Teddy in a production environment and
applying it to small-scale literal rule sets over a period of
time, we were perplexed to discover that the number of false
positives in its shift-or matching process was unexpectedly
high, exceeding our initial expectations. Diving into details, we
found that these additional false positives were caused by the
drawback of the shift instruction in AVX512 SIMD instruction
set.

In this section, we would explain why the shift instruction
leads to additional false positives and how Teddy deals with
it.

A. Additional false positives

Teddy processes a chunk of input bytes in an iteration.
For each chunk, it performs σ − 1 shift operations. Because
the existing shift instruction of AVX512 SIMD instruction set

cannot shift bits across 16-byte boundary, some bits will be
lost after shifting. These lost bits may lead to additional false
positives.

Suppose the literal suffix is ‘ddy’, the last two characters of
previous chunk are ‘a’ and ‘b’, the first character of current
chunk is ‘y’. Lost bits would lead to a false positive at index 1
in current chunk, as shown in Figure 11. In this case, 3 mask
bits of ‘a’ and ‘b’ get lost during shifting. This actually means
that only part of ‘aby’, i.e., ‘y’, is matched.

(a) Previous chunk before shifting

: lost bits due to shift 
: should have been filled with lost bits 
: false positive result 
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1

a 1 1 1
b 1 1 1

d d ySuffix
Input
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1
1

1
1
1

1
1
1

1
1

1

1
1

1

d d ySuffix
Input

00
0

x
y
...
a
b

y
u
...

1
1
1

1
1
1

0
1
1

v 1 1 1
w 1 1 1

d d ySuffix
Input

y
u
... 1

1
1

1
1
1

0
1
1

v

1
1

1
w

1
1

1

d d ySuffix
Input

0 0
0

(b) Previous chunk after shifting

(c) Current chunk before shifting (d) Current chunk after shifting

11
1

Fig. 11. The sequence ‘aby’ scratches across two chunks with ‘ab’ in previous
chunk and ‘y’ in current chunk. Obviously, ‘aby’ doesn’t match with ‘ddy’.
However, after shifting, 3 mask bits of ‘a’ and ‘b’ in previous chunk, which
should have been shifted to current chunk, are lost. Meanwhile, 3 zero bits
are filled in current chunk to replace the lost bits. Finally, a false positive
occurs at index 1 in current chunk and it matches ‘aby’ wrongly with ‘ddy’.

With AVX512 SIMD instruction set, Teddy can handle
64 input bytes in an iteration. During each iteration, the
shift operation is implemented by instruction VPSLLDQ.
Unfortunately, this instruction has a drawback that it cannot
shift bits across 16-byte boundary. Since the chunk size of
AVX512 Teddy is 64 bytes, a chunk includes 4 16-byte
boundaries where some bits will be lost after shift and false
positives may appear. Suppose the input string has a sequence
‘aby’ appearing at each 16-byte boundary, with ‘ab’ in the left
16-byte region and ‘y’ in the right region, the match table and
shift-or results are shown in Figure 12.

At offset 0, 16, 32 and 48, Teddy only matches the last
character ‘y’ of ‘aby’, so it matches ‘aby’ wrongly with ‘ddy’.
In practice, AVX512 Teddy has plenty of additional false
positives caused by the shift instruction and they will severely
influence the overall system performance.

B. The reinforced mask

Through experiments, we found that these additional false
positives account for the majority of total false positives and
may have a great influence on overall system performance. So
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(a) Match table. Look up the mask table and load masks to build this match
table. Obviously, There are no positives at offset 0, 16, 32 and 48.
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(b) Expected shift result. At each 16-byte boundary, bits in colored cells are
those shifted from the left 16-byte regions. They should be mask bits of ‘a’
and ‘b’. There are no positives at offset 0, 16, 32 and 48.
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(c) Actual shift result. Actually, bits in colored cells are all 0 bits because
VPSLLDQ cannot shift bits across 16-byte boundary and 0 bits take the
place. Finally, false positives appear at offset 0, 16, 32 and 48.

Fig. 12. Because ‘aby’ doesn’t match with ‘ddy’, there should be no positives
at offset 0, 16, 32 and 48, just like (b). However, due to the fact that
VPSLLDQ cannot shift bits across 16-byte boundary, the actual shift-or result
is like (c). At offset 0, 16, 32 and 48 positives wrongly appear. They are all
false positives.

Teddy tries to reduce their amount by filling in the lost bits
during shift-or process, as shown in Figure 13.

We call the mask that contains the lost bits of a 16-byte
region’s last character as reinforced mask. And we call the
newly joined vector that contains the 4 reinforced masks as
reinforced vector. Teddy lets the reinforced vector join the or
operation together with the 3 shifted vectors. In this way, it fills
in the lost bits of the last characters in each 16-byte region.
Before doing this, Teddy only matches the last character of
the suffix at 16-byte boundaries, so ‘aby’ matches wrongly
with ‘ddy’. But now Teddy will match the last two characters
of the suffix, so ‘aby’ doesn’t match with ‘ddy’ because ‘by’
doesn’t match with ‘dy’.

In practice, Teddy would build a reinforced mask table at
compile time, as shown in Figure 14. At run time, Teddy would
load necessary reinforced masks to form the reinforced vector
and let it join the or operation together with those shifted
vectors.

C. How strong should it be reinforced to?

As we have mentioned, building a reinforced mask table
and filling in the lost bits of the last bytes in each 16-byte
region could help Teddy to match one more byte at 16-byte
boundaries, and thus reduce the additional false positives.
However, this cannot eliminate all additional false positives,
as shown in Figure 15.

b y ... a ba y ... a b y ... a b y ... a b
bytes 0 16 32 48 63

InputSuffix
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(a) Match table before shifting. Before shifting, the mask bits of ‘b’ are
arranged vertically.
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b y ... a ba y ... a b y ... a b y ... a b
bytes 0 16 32 48 63

InputSuffix
d
d
y

4 reinforced masks of 'b' form the reinforced vector

(b) Match table after shifting. In each square is the shift result of b’s mask
bits. After shifting, mask bits of ‘b’ are arranged diagonally. However, the
first two bits of ‘b’ are lost. The light-colored cells are padded with 0 bits
rather than bits of ‘b’. But now that the bitwise or operation is going to be
performed on those shifted vectors, we can still take the lost bits to form a
new vector to join the or operation. The lost bits can be easily gained from the
mask table. We call the mask that contains the lost bits of the last character
in a 16-byte region as reinforced mask. And we call the newly joined vector
that contains the 4 reinforced masks as reinforced vector.

Fig. 13. After shifting, two mask bits of ‘b’ are lost, but these lost bits can
still be filled in.
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Fig. 14. Reinforced mask table is built by taking the necessary part of
the original mask table. When performing the BIT-OR operations, load the
reinforced masks of those last characters in each 16-byte region to form the
reinforced vector join the BIT-OR together with previous shifted vectors.

Based on what we have illustrated above, it’s easy to under-
stand that this time the false positives are due to the lost bits of
the second to last characters in each 16-byte region. Of course
we can take the same method by building another reinforced
mask table and loading the reinforced masks of those next to
last characters in each 16-byte region. Theoretically, there are
m
16 16-byte boundaries in m input bytes. We take a boundary
as sisi+1si+2, with si and si+1 in left region and si+2 in right
region. These boundaries can be classified into five categories:

• si+2 doesn’t match with any group. These boundaries
won’t produce false positives.

• si+2 matches with certain group but si+1 and si do not.
These boundaries would produce false positives unless
we load reinforced vectors of si and si+1.

• si+2 and si match with certain group. These boundaries
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Fig. 15. Suppose ‘ady’ appears at 16-byte boundaries with ‘ad’ in the left
16-byte region and ‘y’ in the right region. Although the lost bits of ‘d’ have
been made up, false positives still appear at offset 0, 16, 32 and 48 because
filling in lost bits of ‘d’ only guarantees ‘dy’ to be matched properly. Therefore
‘ady’ still matches wrongly with ‘ddy’.

would produce false positives unless we load reinforced
vector of si+1.

• si+2 and si+1 match with certain group. These bound-
aries would produce false positives unless we load rein-
forced vector of si.

• All of si+2, si+1 and si match with certain group. These
boundaries are originally true positives.

Assuming the frequencies of occurrence for these five
boundaries are denoted as fk (k ∈ [1, 5]), the number of
loaded reinforced vectors is denoted as ξ and the number of
false positives produced by shift instruction is denoted as Nfp,
their relation can be represented as:

Nfp =


1
16m(f2 + f3 + f4) ξ = 0
1
16m(f2 + f4) ξ = 1

0 ξ = 2

(1)

Besides, as we have mentioned in Section V-C, Teddy
without reinforced mask would need 5σ SIMD instructions
to process L

8 input bytes. For Teddy with reinforced mask, it
would need (5σ+2ξ) instructions per L

8 input bytes. Therefore,
its instruction complexity is:

I(m) =
40

L
mσ +

16

L
mξ (2)

where L is SIMD vector length, m is input string length, σ is
literal suffix length, ξ is the number of reinforced vectors and
I(m) represents the number of SIMD instructions needed to
process m input bytes.

From equations 1 and 2, we know that increasing ξ would
decrease the number of false positives, but it would also
consume more CPU resources as it introduces extra SIMD
instructions. Therefore, there may exist a best value of ξ.
Through experiment, we find that Teddy will achieve the best
performance with ξ = 1.

VII. EVALUATION

A. Environment

We evaluated Teddy on commodity hardware and conducted
experiments on a Linux server (Ubuntu 18.04) with Intel
Xeon Gold 6364 (2.6GHz, dual sockets, 28 cores per socket)
and 64GB DDR4 memory. Grouping algorithm and encoding
method are implemented in C++, SIMD-based matching al-
gorithm is implemented in C. We used GCC 7.5 to compile
them.

B. Dataset

To evaluate the efficiency of Teddy, we conducted exper-
iments with a variety of real-world DPI literal rules and
network traffic. As shown in Table III, literals were collected
from the rule sets of ModSecurity, which is a DPI-based Web
Application Firewall (WAF). These rule sets range from small-
scale ones (rule sets 1 ∼ 11), which contain less than 60
literals, to medium-scale ones that include hundreds or even
more than a thousand literals. Input strings were collected from
Alexa HTTP requests and IXIA HTTP responses. Also, we
randomly generated an input string for evaluation. We present
them in Table II.

TABLE II
INPUT STRING

Type Size
Random 763 KB

IXIA HTTP Responses 121 MB
Alexa HTTP Requests 2.12 MB

TABLE III
LITERAL RULE SETS (1 ∼ 11 ARE SMALL-SCALE ONES)

No. Name Dataset n Literal Type
1 Scan1 Scanners-headers 8 Scanners
2 Log2 Java-errors 10 Log and Error
3 Mali7 Scripting-user-agents 11 Malicious Code
4 Log1 IIS-errors 13 Log and Error
5 Craw Crawlers-user-agent 16 Crawlers
6 Scan2 Scanners-urls 17 Scanners
7 Atta3 Restricted-upload 17 Malware Attack
8 Mali1 Java-code-leakages 17 Malicious Code
9 Mali6 PHP-variables 19 Malicious Code

10 Mali2 Java-classes 43 Malicious Code
11 Mali4 PHP-function-names 44 Malicious Code
12 Log4 SQL-errors 80 Log and Error
13 Scan3 Scanners-user-agents 87 Scanners
14 Mali8 UNIX-shell 115 Malicious Code
15 Atta2 Restricted-files 127 Malware Attack
16 Log3 PHP-errors 218 Log and Error
17 Mali9 Windows-Powershell 253 Malicious Code
18 Mali3 PHP-config-directives 276 Malicious Code
19 Atta1 Lfi-os-files 1,090 Malware Attack
20 Mali5 PHP-function-names 1,264 Malicious Code

C. Find the optimal values for σ and ξ

We have mentioned that in order to deal with small-scale
literal rule sets more efficiently, Teddy takes a shorter suffix
for shift-or matching. We record the suffix length as σ and
Teddy would need about (5σ + 2ξ) SIMD operations (load,
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shift and or) each iteration in shift-or matching process. This
tells us that with shorter suffix (smaller σ), there would be
less time spent on shift-or matching. However, shorter suffix
also implies more false positives, which would then demand
more time in exact matching to be filtered out. Therefore, a
proper value of σ should be determined through experiments.

Also, we have talked about ξ, the number of reinforced
vectors. Larger ξ would introduce less false positives but also
need more or operations. In other words, larger ξ would reduce
the time spent on exact matching but increase the time spent
on shift-or matching. Therefore, we should also determine a
proper value of ξ.

Hence, to find out the optimal values of σ and ξ, we
carried out 2 groups of experiments with 20 and 80 literals
respectively. These literals were chosen from ModSecurity rule
sets. And we took Alexa HTTP Requests as input string. For
each group of experiments, we increased σ from 1 to 4 and ξ
from 0 to 2. We recorded the number of false positives and
the overall throughput. We repeated each single experiment
1000 times and got the average result, as shown in Figure 16.
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Fig. 16. The number of false positives and the throughput with different
values of σ and ξ.

From Figure 16(c), we see that Teddy has best performance
when (σ, ξ) = (2, 1), its performance with reinforced mask is
21% better than without reinforced mask (i.e., (σ, ξ) = (2, 0)).
From Figure 16(d), we see that Teddy has best performance
when (σ, ξ) = (3, 1), its performance with reinforced mask
is 158% better than without reinforced mask (i.e., (σ, ξ) =
(3, 0)). This result shows the effectiveness of reinforced
mask.

According to our practical experience, we usually take
(σ, ξ) = (3,1). This can be attributed to the pattern observed
in the number of false positives. From Figure 16(a) and 16(b),
it is evident that there is a notable decrease in the number
of false positives as ξ increases from 0 to 1. However, the

reduction becomes less prominent as ξ increases further from
1 to 2. Similarly, when considering a fixed value of ξ, the
reduction in false positives is apparent when σ increases from
1 to 3, but becomes subtle or even results in an increase when
σ further increases from 3 to 4.

In the production environment, we consistently use (σ, ξ) =
(3, 1) as our chosen parameters. Hence, for the remaining
evaluation, we will continue to utilize σ = 3 and ξ = 1 as our
designated values.

D. The effectiveness of grouping strategy

To deal with small-scale literal rule sets more efficiently,
Teddy matches the 3-byte-long suffixes during the process of
shift-or matching. Also, it takes a new grouping strategy that
is different from FDR’s grouping to reduce false positives.
To prove the effectiveness of Teddy’s grouping strategy, we
conducted two sets of experiments, with IXIA HTTP Re-
sponses as input string and ModSecurity rules in Table III
as literal rule sets. One set of experiments is to let Teddy use
its own grouping strategy, while the other set of experiments
is to let Teddy use FDR’s grouping strategy. For each single
experiment, we counted the number of false positives, as
shown in Figure 17.
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Fig. 17. The number of false positives with different grouping strategy.

We can see that in most cases Teddy’s grouping strategy
introduces less false positives than FDR’s grouping strategy.

E. Overall performance compared with AC and FDR

To compare the overall performance among AC, FDR and
Teddy, we conducted three groups of experiments with random
string, IXIA HTTP Responses and Alexa HTTP Requests as
input strings respectively. We also tested the performance of
Teddy without reinforced mask. To distinguish it from Teddy
with reinforced mask, we refer to the latter as Enhanced Teddy.
For each group of experiments, we took ModSecurity small-
scale literal rule sets, those 1 ∼ 11 in Table III, as literal rules.
The result is shown in Figure 18.

Although Teddy is designed to deal with small-scale literal
rule sets, we also conducted another three groups of experi-
ments to feed Teddy with medium-scale literal rule sets, those
12 ∼ 20 in Table III, as shown in Figure 19.
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Fig. 18. Compare the performance of AC, FDR, and Teddy with ModSecurity small-scale literal rule sets (1 ∼ 11 in Table III). In most cases Enhanced
Teddy is faster than AC, FDR and Teddy. In (a), with random string as input, Enhanced Teddy’s performance is up to 2.17x that of FDR, 34.32x that of
AC and 1.34x that of Teddy. In (b), with IXIA HTTP Responses Enhanced Teddy’s performance is up to 1.76x that of FDR, 21.24x that of AC and 1.37x
that of Teddy. In (c), with Alexa HTTP Requests as input, Enhanced Teddy’s performance is up to 1.68x that of FDR, 43.07x that of AC and 1.74x that of
Teddy.
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Fig. 19. Compare the performance of AC, FDR, and Teddy with ModSecurity medium-scale literal rule sets (12 ∼ 20 in Table III). In many medium-scale
cases, Teddy can still perform very well, as shown in (a) and (b). But in other cases, Teddy doesn’t catch up with FDR, as shown in (c).

F. Detailed comparison between Teddy and FDR

Both Teddy and FDR would produce false positives during
the process of shift-or matching. The number of false positives
may depend on their grouping strategies and suffix length.
Meanwhile, both of them have two matching stages, shift-or
matching and exact matching. Shift-or matching is to find the
potential matching positions and exact matching is to filter
out the false positives. Teddy and FDR take different shift-
or matching algorithms but share the same exact matching
process.

Through the above experiments we observe that Teddy is
much faster than FDR in most cases. To provide a clearer
explanation for Teddy’s high performance, we conducted fur-
ther experiments comparing Teddy with FDR through more
dimensions, including the number of false positives, shift-or
matching time and exact matching time. We randomly chose 5
literal rule sets from Table III and took IXIA HTTP Responses
as input strings for our experiments.

The comparison of false positives is shown in Figure 20(a).
We observe that Teddy has much more false positives than
FDR, which is reasonable because Teddy takes a 3-byte-long
suffix for shift-or matching while FDR takes an 8-byte-long
suffix. In the process of shift-or matching, FDR can guarantee
the last 8 bytes of literals to be matched correctly but Teddy
can only guarantee the last 3 bytes to be exactly matched.
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Fig. 20. Detailed comparison between Teddy and FDR.

The comparison of shift-or matching and exact matching
is shown in Figure 20(b). We can observe that: i) Teddy
spends more time on exact matching than FDR. This is
because Teddy has more false positives that need to be filtered
out in exact matching, as shown in Figure 20(a). ii) Teddy
spends much less time on shift-or matching than FDR. This is
because Teddy matches only the last 3 bytes of the literals in
shift-or matching, while FDR matches the last 8 bytes. This
experiment tells us that Teddy beats FDR by maintaining a
more reasonable balance between shift-or matching and exact
matching when confronted with small-scale literal rule sets.
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VIII. CONCLUSION

In this paper, we have proposed Teddy as a solution to
the scalability issue that the efficiency of FDR in small-scale
literal rule sets is not satisfying. Compared with FDR, Teddy
works much more efficiently when confronted with small-scale
literal rule sets. Specifically, Teddy integrates the following
features into its overall design: (1) Teddy proposes a suffix-
based matching strategy to match a shorter suffix during the
process of shift-or matching so that it can reduce the number
of shift and or operations; (2) Teddy takes a new SIMD-based
shift-or matching algorithm that can parallelly match up to 64
characters with only 15 SIMD operations; (3) Teddy finds an
appropriate encoding method to implement the algorithm on
real-world SIMD platforms; (4) Teddy reduces a lot of false
positives and improves the overall performance significantly
by introducing the reinforced mask. Our evaluation results
show that Teddy can achieve up to 43.07x performance of AC,
2.16x performance of FDR. Comparing Teddy with state-of-
the-art solutions, the results demonstrate the effectiveness of
our engine. Teddy has been integrated into Hyperscan, together
with which it has been widely deployed into predominant DPI
applications such as Snort and Suricata.
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